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Convergence through Federation, 
don’t count on unification alone

• Many benefits for a unified (converged) stack
– Common code base – less code to maintain
– Common build environments – fewer

target platforms

• Many challenges …
– Won’t happen in the near future

• Likely an 80% solution
– Effort to migrate code to the new stack 
– Would inhibit innovation
– Won’t extend to sources of data

• What’s the next grand convergence?
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A Good Buzzword Takes on a Life of its Own

• Technological buzzwords usually start as a novel solution to one or 
more challenges facing the community

• They become buzzwords when the excitement (hype?) about the 
solution overtakes the memory of the motivating challenge
– Then they become the solution for everything
– And we forget the problems we were really trying to solve in the first place

• Virtualization has been a popular buzzword in HPC for 10+ years
• Containers more recent, but (currently) more hype

– For purposes of this presentation, containers are just another 
virtualization approach
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Virtualization
We can solve any problem by introducing an extra level of indirection
Butler Lampson (who credited David Wheeler)

• Virtualization is the ultimate “level of indirection”
– Usually implies multiplicity & isolation
– Mechanisms: processes, containers, virtual machines, …

• Virtualization in HPC: CUG 2006, Lugano
– “Recent Trends in Operating Systems and Their Applicability to HPC”

• Maccabe, Bridges, Brightwell, Riesen
– Argued for virtualization as the basis for HPC system software

• Xen was new and primarily aimed at banking systems (the “cloud” wasn’t ubiquitous)

• Original Goal: “Bring your own stack”
– Fun for OS research…... Not very compelling for most people
– Potential for near “bare metal” performance….. May conflict with productivity concerns
– MM5 failed after a Linux upgrade….. Still important, but not for active development communities
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So What Is Virtualization Good for?

• Good is relative to value to HPC applications

• Application packaging, distribution, and deployment
– Ability to bundle up the complete software stack supporting an application
– Ability to convey those bundles to other users
– Ability to launch (applications from) those bundles on (various) HPC systems
– Ability to develop on your laptop and run on an HPC system
Build the app and all its dependencies on a new system, or bring a complete image with 
you?

• Runtime resource partitioning/management (maybe)
– Significant motivation for cloud environments
– HPC usage model is very different – we don’t share nodes among multiple users
– Perhaps control over sharing of resources for a single complex simulation would be useful
– Many of the HPC use cases end up looking contrived
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Consider Two Use Cases for Packaging in HPC

• Composition of complex applications
– Many computational science applications have extensive dependencies
– Increasingly, multi-scale multi-physics, multi-… applications are being created 

by coupling of codes which were previously standalone

• Reproducibility of simulations
– Reproducibility of scientific research in general, and computational science 

research in particular is under increasing scrutiny
– Concerns about ability to reproduce one’s own work in the future
– Concerns about ability of the community to appropriately peer review work
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• Demonstrated three different model applications in VM-based environment
– Kocoloski, et al., System-Level Support for Composition of Applications, ROSS’15
– Using ADIOS or TCASM as application-level API for composition

• Crack detection in molecular dynamics simulations
– LAMMPS molecular dynamics
– Bonds analytics (calculate bond distances)

• Plasma microturbulence
– GTC-P plasma microturbulence
– PreDatA analytics (histogramming of particle properties)

• Neutronics energy spectrum analysis
– SNAP neutronics proxy application
– Energy spectrum analysis

Initial Composition Demonstration: Simulation + Analytics
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Modern Complex Multi-{Physics,Scale,…} Applications

• Computational components representing 
different types of physics

• Coupled by exchanging boundary 
conditions, etc.

• Often created by forcing standalone 
“single-physics” applications to interact

• The mechanics of the coupling (typically) 
consume vast amounts of human effort
– The design and development of the standalone 

apps probably never considered coupling
– Different representations for the data
– Integrating the code base itself
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DTK Addresses (Only) One Aspect of the Problem

• Data Transfer Kit is a library for parallel solution transfer in multiphysics and 
multiscale simulations
– https://ornl-cees.github.io/DataTransferKit/

• Defines adapters (for mesh libraries, etc.) operators (for transformations), etc.
• Minimal modifications to target components to enable coupling
• But DTK assumes that the entire application is a single executable

– This is often a much larger challenge than instrumenting the code for the coupling
– Need a common software stack with all conflicting dependencies harmonized

• Example: CASL spends 3 FTEs (~4% of budget) just on resolving 
dependency conflicts across their multiphysics components
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Can We Make this Easier?
• What if we could allow each 

component to use its “natural” 
dependency stack?
– Use virtualization to provide necessary 

isolation between “enclaves”
– Need ability to exchange memory and 

(minimal) control between enclaves

• XEMEM – cross-enclave shared 
memory segments
– Based on XPMEM

• Simple command queues between 
enclaves

• Developed in Hobbes Exascale
OS/R project
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Same basic approach can be used with virtual 
machines, containers, or processes as the enclaves
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Notional Sequence of Operations for Multi-Enclave Sim
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Sketch of Code for App Initialization
(both appA and appB)
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• Hobbes initialization

• Initialization handshake with the driver

• Allocate buffer for the mesh that will be 
shared with the driver

• Mesh data passed to the driver

• Start execution loop 

Some new code required to 
initialize Hobbes environment
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Sketch of Code for App 
Execution Loop (appA
and appB similar)
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• Computation – kernel using 
the mesh (unmodified)

• Notify the driver that the 
computation succeeded

• Wait for the driver

Some new code required 
to handle control transfers
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Sketch of Code for DTK Driver
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• Wait for appA to finish main computation

• Transform appA mesh to appB

• Signal appB and wait for it to finish main 
computation

• Transform appB mesh to appA

• Signal appA to run main computation

Some different code required 
to handle control transfers
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Implementation Details
Processes
• Operating system

–Single kernel

• System view
–Separate memory spaces

• User view
–Must keep multiple stacks 

straight

• General remarks
–Native performance

Virtual 
Machines
• Operating system

–Multiple kernels 
(host/guest)

• System view
–Virtualize the hardware & 

control access

• User view
–Ability to fully customize 

guest kernel/system

• General remarks
–Performance

• 95-98% of native
–Examples

• Xen (type-I), KVM (type-II), 
Palacios (type-II)
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Containers
• Operating system

–Single kernel

• System view
–Isolate resources & 

context of processes

• User view
–Ability to customize stack 

(above kernel)

• General remarks
–Performance

• Near native (w/o network 
isolation via overlays)

–Examples 
• Docker, LXC

Kevin Pedretti will talk more about the 
Hobbes environment and in particular 
the VM-based implementation Used in current demo



16

Performance Comparison
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Test mesh contains 3,000 3d points. 
Timings averaged over 500 iterations (1000 for command queue). 
Host platform: vintage (2011) 4x 8-core AMD Opteron @ 2.0 GHz, 128 GB RAM, RHEL 7.3
Container uses Docker with Ubuntu 16.04 guests.  
Virtual uses Palacios with minimal Busybox guests.

Large standard deviations are due to a small 
number of outliers.  Not yet understood.

Demonstration mesh is very small, so 
overheads will be accentuated.

P2P Command Queue Timing

Outliers

…

Measurement Baseline (µs) Process (µs) Container (µs) Virtual (µs)
Command queue 48.3 ± 20.8 48.3 ± 20.8 37.1 ± 83.0
appA -> appB mesh transformation 14,080 ± 852 9,986 ± 692 9,400 ± 135
appB -> appA mesh transformation 17,298 ± 143 13,570 ± 111 13,153 ± 127
Complete application iteration 31,395 ± 660 25,132 ± 312 23,422 ± 469
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Next Steps

• Understand (and ameliorate) performance variability
• Extend to MPI parallel

– (Current demonstration is single node, due to delays in MPI support in Palacios)
– Should “just work”

• Integrate XEMEM allocation into Trilinos (for example) data structures
– Could be seen as small extension of what DTK already does, providing “adapters” for many 

popular mesh libraries

• Demonstrate other composite application scenarios
– Simulation + analytics done in ROSS’15 paper
– Coupled multiphysics done here

• Look for use cases where resource partitioning/management is really useful
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And now for something 
completely different….. 
Reproducibility
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Reproducibility Terminology
• Reviewable Research: Descriptions of the research methods can be 

independently assessed and judged credible (may not imply reproducibility)
• Replicable Research: Tools are made available that would allow one to 

duplicate the results of the research (for example, running the author’s code to 
produce the plots in the paper)

• Confirmable Research: Main conclusions of the research can be attained 
independently, without the use of software provided by the author. (But using 
complete description of algorithms, methodology, etc.)

• Auditable Research: Sufficient records have been archived so that research 
can be defended later, if necessary or differences between independent 
conformations resolved.  Archive may be private

• Open or Reproducible Research: Auditable research made openly available

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Terminology used by ACM, based on V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVesque, W. 
Rider, and W. Stein. 2013. Setting the Default to Reproducible: Reproducibility in Computational 
and Experimental Mathematics. (2013). https://icerm.brown.edu/tw12-5-rcem/icerm_report.pdf
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Virtualization and Reproducibility Thought Experiment

• What does it take to “reproduce” an application?
– Dependent libraries
– Compilers? (code generation details)
– System software? (dependencies not in the form of libraries)
– OS kernel?
– Processor and other hardware?

• Containers and virtual machines can encapsulate some or all of these
– VMs could even allow hardware to be emulated

• This is not an original idea – much prior experimentation
• But the devil is in the details, and this is not yet routine
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Conclusions

• For HPC, virtualization techniques are primarily useful as a means to facilitate 
packaging, distribution, and deployment of complex computational science 
and engineering applications
– Encapsulate and isolate dependencies
– Eliminate the need for every user to build

• Reproducibility is an increasingly prominent concern that virtualization can help
• Application composition is another

– Single model and API supports process-, container-, or VM-based composition
• Uses only shared memory segments (XEMEM) and command queues

– Can be used with minimal intrusion into code
– High-performance virtualization techniques mean minimal performance impact
– Complements tools like Data Transfer Kit (DTK) which focus on coupling/exchange of data at 

application level
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