
ORNL is managed by UT-Battelle
for the US Department of Energy

If Virtualization is
the Answer, what
was the Question?

David E. Bernholdt, Geoffroy Vallee, Thomas
Naughton, Stuart Slattery, Damien Lebrun-Grandie,
and Barney Maccabe
Oak Ridge National Laboratory

in collaboration with the Hobbes Exascale OS/R Team

This work has been supported by US Department
of Energy, Office of Science, Advanced Scientific
Computing Research program, and performed in
part at the Oak Ridge National Laboratory, which
is managed by UT-Battelle, LLC for the U.S.
Department of Energy under Contract No. DE-
AC05-00OR22725.

2

Convergence through Federation,
don’t count on unification alone

• Many benefits for a unified (converged) stack
– Common code base – less code to maintain
– Common build environments – fewer

target platforms

• Many challenges …
– Won’t happen in the near future

• Likely an 80% solution
– Effort to migrate code to the new stack
– Would inhibit innovation
– Won’t extend to sources of data

• What’s the next grand convergence?

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

3

A Good Buzzword Takes on a Life of its Own

• Technological buzzwords usually start as a novel solution to one or
more challenges facing the community

• They become buzzwords when the excitement (hype?) about the
solution overtakes the memory of the motivating challenge
– Then they become the solution for everything
– And we forget the problems we were really trying to solve in the first place

• Virtualization has been a popular buzzword in HPC for 10+ years
• Containers more recent, but (currently) more hype

– For purposes of this presentation, containers are just another
virtualization approach
2017-03-20/2017-03-23 SOS21, Davos, Switzerland

4

Virtualization
We can solve any problem by introducing an extra level of indirection
Butler Lampson (who credited David Wheeler)

• Virtualization is the ultimate “level of indirection”
– Usually implies multiplicity & isolation
– Mechanisms: processes, containers, virtual machines, …

• Virtualization in HPC: CUG 2006, Lugano
– “Recent Trends in Operating Systems and Their Applicability to HPC”

• Maccabe, Bridges, Brightwell, Riesen
– Argued for virtualization as the basis for HPC system software

• Xen was new and primarily aimed at banking systems (the “cloud” wasn’t ubiquitous)

• Original Goal: “Bring your own stack”
– Fun for OS research…... Not very compelling for most people
– Potential for near “bare metal” performance….. May conflict with productivity concerns
– MM5 failed after a Linux upgrade….. Still important, but not for active development communities

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

5

So What Is Virtualization Good for?

• Good is relative to value to HPC applications

• Application packaging, distribution, and deployment
– Ability to bundle up the complete software stack supporting an application
– Ability to convey those bundles to other users
– Ability to launch (applications from) those bundles on (various) HPC systems
– Ability to develop on your laptop and run on an HPC system
Build the app and all its dependencies on a new system, or bring a complete image with
you?

• Runtime resource partitioning/management (maybe)
– Significant motivation for cloud environments
– HPC usage model is very different – we don’t share nodes among multiple users
– Perhaps control over sharing of resources for a single complex simulation would be useful
– Many of the HPC use cases end up looking contrived

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

6

Consider Two Use Cases for Packaging in HPC

• Composition of complex applications
– Many computational science applications have extensive dependencies
– Increasingly, multi-scale multi-physics, multi-… applications are being created

by coupling of codes which were previously standalone

• Reproducibility of simulations
– Reproducibility of scientific research in general, and computational science

research in particular is under increasing scrutiny
– Concerns about ability to reproduce one’s own work in the future
– Concerns about ability of the community to appropriately peer review work

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

7

• Demonstrated three different model applications in VM-based environment
– Kocoloski, et al., System-Level Support for Composition of Applications, ROSS’15
– Using ADIOS or TCASM as application-level API for composition

• Crack detection in molecular dynamics simulations
– LAMMPS molecular dynamics
– Bonds analytics (calculate bond distances)

• Plasma microturbulence
– GTC-P plasma microturbulence
– PreDatA analytics (histogramming of particle properties)

• Neutronics energy spectrum analysis
– SNAP neutronics proxy application
– Energy spectrum analysis

Initial Composition Demonstration: Simulation + Analytics

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Kitten	Co-Kernel	
(Pisces)

Hardware

AD
IO
S

XE
M
EMHobbes	

Runtime

Application

Operating	
System

Simulation

Linux

TC
AS

M

TC
AS

M

AD
IO
S

XE
M
EM

Analytics

8

Modern Complex Multi-{Physics,Scale,…} Applications

• Computational components representing
different types of physics

• Coupled by exchanging boundary
conditions, etc.

• Often created by forcing standalone
“single-physics” applications to interact

• The mechanics of the coupling (typically)
consume vast amounts of human effort
– The design and development of the standalone

apps probably never considered coupling
– Different representations for the data
– Integrating the code base itself

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Clad Heat Flux

Clad Surface Temperature

Fuel
Performance

Neutron transport

Thermal-
hydraulics

9

DTK Addresses (Only) One Aspect of the Problem

• Data Transfer Kit is a library for parallel solution transfer in multiphysics and
multiscale simulations
– https://ornl-cees.github.io/DataTransferKit/

• Defines adapters (for mesh libraries, etc.) operators (for transformations), etc.
• Minimal modifications to target components to enable coupling
• But DTK assumes that the entire application is a single executable

– This is often a much larger challenge than instrumenting the code for the coupling
– Need a common software stack with all conflicting dependencies harmonized

• Example: CASL spends 3 FTEs (~4% of budget) just on resolving
dependency conflicts across their multiphysics components

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

10

Can We Make this Easier?
• What if we could allow each

component to use its “natural”
dependency stack?
– Use virtualization to provide necessary

isolation between “enclaves”
– Need ability to exchange memory and

(minimal) control between enclaves

• XEMEM – cross-enclave shared
memory segments
– Based on XPMEM

• Simple command queues between
enclaves

• Developed in Hobbes Exascale
OS/R project

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Host – Enclave 0
DTK Driver

(C++/Trilinos)

Virtual Machine
Enclave 1

appA
(C++/Trilinos)

Virtual Machine
Enclave 2

appB
(C++/Trilinos)

Control Protocol
w/ driver

Control Protocol
w/ driver

Same basic approach can be used with virtual
machines, containers, or processes as the enclaves

11

Notional Sequence of Operations for Multi-Enclave Sim

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Application A
(C++/Trilinos)

Application B
(C++/Trilinos)

Coordination
Component /
Driver (DTK)

Initialization

Init handshake

XEMEM segment XEMEM segment Initialization

Init handshake

Execute kernel

Transform mesh A->B

Execute kernel

Termination
handshake

Start iteration

Main
execution

loop

Transform mesh B->A
Test convergence

Initialization
allocates and
registers
XEMEM shared
memory
segments for
mesh data
structures

12

Sketch of Code for App Initialization
(both appA and appB)

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

• Hobbes initialization

• Initialization handshake with the driver

• Allocate buffer for the mesh that will be
shared with the driver

• Mesh data passed to the driver

• Start execution loop

Some new code required to
initialize Hobbes environment

13

Sketch of Code for App
Execution Loop (appA
and appB similar)

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

• Computation – kernel using
the mesh (unmodified)

• Notify the driver that the
computation succeeded

• Wait for the driver

Some new code required
to handle control transfers

14

Sketch of Code for DTK Driver

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

• Wait for appA to finish main computation

• Transform appA mesh to appB

• Signal appB and wait for it to finish main
computation

• Transform appB mesh to appA

• Signal appA to run main computation

Some different code required
to handle control transfers

15

Implementation Details
Processes
• Operating system

–Single kernel

• System view
–Separate memory spaces

• User view
–Must keep multiple stacks

straight

• General remarks
–Native performance

Virtual
Machines
• Operating system

–Multiple kernels
(host/guest)

• System view
–Virtualize the hardware &

control access

• User view
–Ability to fully customize

guest kernel/system

• General remarks
–Performance

• 95-98% of native
–Examples

• Xen (type-I), KVM (type-II),
Palacios (type-II)

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Containers
• Operating system

–Single kernel

• System view
–Isolate resources &

context of processes

• User view
–Ability to customize stack

(above kernel)

• General remarks
–Performance

• Near native (w/o network
isolation via overlays)

–Examples
• Docker, LXC

Kevin Pedretti will talk more about the
Hobbes environment and in particular
the VM-based implementation Used in current demo

16

Performance Comparison

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Test mesh contains 3,000 3d points.
Timings averaged over 500 iterations (1000 for command queue).
Host platform: vintage (2011) 4x 8-core AMD Opteron @ 2.0 GHz, 128 GB RAM, RHEL 7.3
Container uses Docker with Ubuntu 16.04 guests.
Virtual uses Palacios with minimal Busybox guests.

Large standard deviations are due to a small
number of outliers. Not yet understood.

Demonstration mesh is very small, so
overheads will be accentuated.

P2P Command Queue Timing

Outliers

…

Measurement Baseline (µs) Process (µs) Container (µs) Virtual (µs)
Command queue 48.3 ± 20.8 48.3 ± 20.8 37.1 ± 83.0
appA -> appB mesh transformation 14,080 ± 852 9,986 ± 692 9,400 ± 135
appB -> appA mesh transformation 17,298 ± 143 13,570 ± 111 13,153 ± 127
Complete application iteration 31,395 ± 660 25,132 ± 312 23,422 ± 469

17

Next Steps

• Understand (and ameliorate) performance variability
• Extend to MPI parallel

– (Current demonstration is single node, due to delays in MPI support in Palacios)
– Should “just work”

• Integrate XEMEM allocation into Trilinos (for example) data structures
– Could be seen as small extension of what DTK already does, providing “adapters” for many

popular mesh libraries

• Demonstrate other composite application scenarios
– Simulation + analytics done in ROSS’15 paper
– Coupled multiphysics done here

• Look for use cases where resource partitioning/management is really useful

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

18

And now for something
completely different…..
Reproducibility

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

19

Reproducibility Terminology
• Reviewable Research: Descriptions of the research methods can be

independently assessed and judged credible (may not imply reproducibility)
• Replicable Research: Tools are made available that would allow one to

duplicate the results of the research (for example, running the author’s code to
produce the plots in the paper)

• Confirmable Research: Main conclusions of the research can be attained
independently, without the use of software provided by the author. (But using
complete description of algorithms, methodology, etc.)

• Auditable Research: Sufficient records have been archived so that research
can be defended later, if necessary or differences between independent
conformations resolved. Archive may be private

• Open or Reproducible Research: Auditable research made openly available

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

Terminology used by ACM, based on V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVesque, W.
Rider, and W. Stein. 2013. Setting the Default to Reproducible: Reproducibility in Computational
and Experimental Mathematics. (2013). https://icerm.brown.edu/tw12-5-rcem/icerm_report.pdf

20

Virtualization and Reproducibility Thought Experiment

• What does it take to “reproduce” an application?
– Dependent libraries
– Compilers? (code generation details)
– System software? (dependencies not in the form of libraries)
– OS kernel?
– Processor and other hardware?

• Containers and virtual machines can encapsulate some or all of these
– VMs could even allow hardware to be emulated

• This is not an original idea – much prior experimentation
• But the devil is in the details, and this is not yet routine

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

21

Conclusions

• For HPC, virtualization techniques are primarily useful as a means to facilitate
packaging, distribution, and deployment of complex computational science
and engineering applications
– Encapsulate and isolate dependencies
– Eliminate the need for every user to build

• Reproducibility is an increasingly prominent concern that virtualization can help
• Application composition is another

– Single model and API supports process-, container-, or VM-based composition
• Uses only shared memory segments (XEMEM) and command queues

– Can be used with minimal intrusion into code
– High-performance virtualization techniques mean minimal performance impact
– Complements tools like Data Transfer Kit (DTK) which focus on coupling/exchange of data at

application level

2017-03-20/2017-03-23 SOS21, Davos, Switzerland

