If Virtualization is
the Answer, what
was the Question?

David E. Bernholdt, Geoffroy Vallee, Thomas
Naughton, Stuart Slattery, Damien Lebrun-Grandie,
and Barnev Maccabe This work has been supported by US Department
Oak Ridge National Laboratory of Energy, Office of Science, Advanced Scientific

Computing Research program, and performed in
part at the Oak Ridge National Laboratory, which

in collaboration with the Hobbes Exascale OS/R Team is managed by biFBattelie, LLCjfor the U.S.

Department of Energy under Contract No. DE-

ACO05-000R22725.
ORNL is managed by UT-Battelle %OAK RIDGE

for the US Department of Energy National Laboratory



Convergence through Federation,
don’t count on unification alone

- Many benefits for a unified (converged) stack THERE CAN BE o'“'_ﬁ;nug
— Common code base — less code to maintain |

— Common build environments — fewer

APPLICATION Mahout, R and Applications Applications and Community Codes
target platforms
., Hve Pig  Sqoop Flume FORTRAN, C, C++ and IDEs
- Many challenges ...
S Map-Reduce Storm Domain-specific Libraries I
) H = > 3]
- WO n t h a p pe n I n th e n ea r fu tu re mz:kﬁgﬁ::: g § Hbase BigTable :E; MPI/OpenMP Numerical Performance & %
H H = umer Debugging §
o Ll kely an 80% SOI Utlon g g (key-value store) +A°°e§;at°r Libraries (e.g., PAPI)
&3 =5 HDFS (Hadoop File System) Lustre (Parallel Batch Scheduler Miﬁf:rrimg
. = File System) (e.g., SLURM)
— Effort to migrate code to the new stack g
>
=
H ‘Inid H g Virtual Machines and Cloud Services Containers
- WO U Id I n h I blt I n novathn Containers (Kubernetes, Docker, etc.) (Singularity, Shifter, etc.)

SYSTEM

~ Won't extend to sources of data

« What's the next grand convergence?

Ethernet Local Node  Commodity X86 Infiniband + SAN + Local  X86 Racks + In-situ

p Ethernet Node GPUs or P i
Hil;‘%ﬂf\gl_: Switches Storage Racks Swtiches Storage  Accelerators rocessing
DATA ANALYTICS ECOSYSTEM COMPUTATIONAL SCIENCE ECOSYSTEM
Figure 1: The two software ecosystems %OAK RIDGE
2017-03-20/2017-03-23 SOS21, Davos, Switzerland National Laboratory



A Good Buzzword Takes on a Life of its Own

 Technological buzzwords usually start as a novel solution to one or
more challenges facing the community

* They become buzzwords when the excitement (hype?) about the
solution overtakes the memory of the motivating challenge

— Then they become the solution for everything
— And we forget the problems we were really trying to solve in the first place

* Virtualization has been a popular buzzword in HPC for 10+ years

» Containers more recent, but (currently) more hype

— For purposes of this presentation, containers are just another
virtualization approach

%OAK RIDGE

1 Labor



Virtualization

We can solve any problem by introducing an extra level of indirection
Butler Lampson (who credited David Wheeler)
* Virtualization is the ultimate “level of indirection”

— Usually implies multiplicity & isolation

— Mechanisms: processes, containers, virtual machines, ...

* Virtualization in HPC: CUG 2006, Lugano

— “Recent Trends in Operating Systems and Their Applicability to HPC”
* Maccabe, Bridges, Brightwell, Riesen

— Argued for virtualization as the basis for HPC system software
« Xen was new and primarily aimed at banking systems (the “cloud” wasn’t ubiquitous)
* Original Goal: “Bring your own stack”
— Fun for OS research...... Not very compelling for most people
— Potential for near “bare metal” performance..... May conflict with productivity concerns

— MMS5 failed after a Linux upgrade..... Still important, but not for active development communities
OAK RIDGE

2017-03-20/2017-03-23 S0S21, Davos, Switzerland %National Laboratory



So What Is Virtualization Good for?

« Good is relative to value to HPC applications

» Application packaging, distribution, and deployment
— Ability to bundle up the complete software stack supporting an application
— Ability to convey those bundles to other users
— Ability to launch (applications from) those bundles on (various) HPC systems
— Ability to develop on your laptop and run on an HPC system
Builg the app and all its dependencies on a new system, or bring a complete image with
you:
* Runtime resource partitioning/management (maybe)
— Significant motivation for cloud environments
— HPC usage model is very different — we don’t share nodes among multiple users
— Perhaps control over sharing of resources for a single complex simulation would be useful
— Many of the HPC use cases end up looking contrived EIY

2017-03-20/2017-03-23 S0S21, Davos, Switzerland %National Laboratory



Consider Two Use Cases for Packaging in HPC

« Composition of complex applications
—Many computational science applications have extensive dependencies

— Increasingly, multi-scale multi-physics, multi-... applications are being created
by coupling of codes which were previously standalone

* Reproducibility of simulations

— Reproducibility of scientific research in general, and computational science
research in particular is under increasing scrutiny

— Concerns about ability to reproduce one’s own work in the future
— Concerns about ability of the community to appropriately peer review work

%OAK RIDGE
2017-03-20/2017-03-23 S0S21, Davos, Switzerland 1 Labor



Initial Composition Demonstration: Simulation + Analytics

 Demonstrated three different model applications in VM-based environment
— Kocoloski, et al., System-Level Support for Composition of Applications, ROSS’15
— Using ADIOS or TCASM as application-level API for composition ~

» Crack detection in molecular dynamics simulations #eelication [ simulation Analytics
— LAMMPS molecular dynamics Hobbes
— Bonds analytics (calculate bond distances) Runtime
* Plasma microturbulence Operating | itten Co-Kernel
System (Pisces)

— GTC-P plasma microturbulence

— PreDatA analytics (histogramming of particle properties) \ Hardware

BP file
sorted array —
P

Sort

* Neutronics energy spectrum analysis =
— SNAP neutronics proxy application patticle array I

— Energy spectrum analysis 5 — (e }{ e} VE™
-~

2017-03-20/2017-03-23 S0S21, Davos, Switzerland 120 HistogramH Plotter '—’ ‘

Index file




Modern Complex Multi-{Physics,Scale,...} Applications

« Computational components representing
different types of physics

Clad Heat Flux

» Coupled by exchanging boundary
conditions, etc.

Clad Surface Temperature

« Often created by forcing standalone
“single-physics” applications to interact hydraulics

Performance

» The mechanics of the coupling (typically)
consume vast amounts of human effort

— The design and development of the standalone
apps probably never considered coupling

— Different representations for the data
— Integrating the code base itself

Neutron transport

%OAK RIDGE
2017-03-20/2017-03-23 S0S21, Davos, Switzerland National Laboratory



DTK Addresses (Only) One Aspect of the Problem

« Data Transfer Kit is a library for parallel solution transfer in multiphysics and
multiscale simulations

— https://ornl-cees.qithub.io/DataTransferKit/
» Defines adapters (for mesh libraries, etc.) operators (for transformations), etc.

* Minimal modifications to target components to enable coupling

- But DTK assumes that the entire application is a single executable
— This is often a much larger challenge than instrumenting the code for the coupling
— Need a common software stack with all conflicting dependencies harmonized

- Example: CASL spends 3 FTEs (~4% of budget) just on resolving
dependency conflicts across their multiphysics components

%OAK RIDGE
2017-03-20/2017-03-23 S0S21, Davos, Switzerland 1 Labor



Can We Make this Easier?

« What if we could allow each
component to use its “natural”
dependency stack?

— Use virtualization to provide necessary
isolation between “enclaves”

— Need ability to exchange memory and
(minimal) control between enclaves

« XEMEM - cross-enclave shared
memory segments

— Based on XPMEM

« Simple command queues between
enclaves

* Developed in Hobbes Exascale
OS/R project

2017-03-20/2017-03-23 S0S21, Davos, Switzerland

Virtual Machine Virtual Machine
Enclave 1 Enclave 2
appA appB
(C++/Trilinos) (C++/Trilinos)

Control Protocol Control Protocol
w/ driver w/ driver

Host — Enclave O
DTK Driver
(C++/Trilinos)

Same basic approach can be used with virtual
machines, containers, or processes as the enclaves
%OAK RIDGE

National Laboratory



Notional Sequence of Operations for Multi-Enclave Sim

Initializati Application A Coordination Application B
nitialization (C++/Trilinos) Component / (C++/Trilinos)
allocates and Driver (DTK)
registers e e
XIgMEM shared UNEUPZLCEN XEMEM segment XEMEM segment BIEIr2 e a
memory -
segments for Init handshake Init handshake
mesh data
structures Start iteration
Execute kernel

Main Transform mesh A->B
execution =

loop Execute kernel

Transform mesh B->A
_ Test convergence

B Termination —
HEISELE

2017-03-20/2017-03-23 S0S21, Davos, Switzerland

%OAK RIDGE

National Laboratory



Sketch of Code for App Initialization

(both appA and appB)

® @® src — gvh@livingstone:~ — vi appA.cpp — 81x78

- Hobbes initialization =
 |Initialization handshake with the driver

* Allocate buffer for the mesh that will be
shared with the driver

- Mesh data passed to the driver

 Start execution loop

Some new code required to
Initialize Hobbes environment

2017-03-20/2017-03-23

S0S21, Davos, Switzerland

gvh@livingsto... gvh@hal9000... ... gvh@livin... ... >  +
rc = _setup_hobbes (&db, NULL, NULL);

if (rc !'=0)

{

fprintf (stderr, "ERROR: _setup_hobbes() failed\n");
goto exit_fn_on_error;

}
VES
* Setting up 2 comamnd queues for bi-directional commands with the
* driver.
*/
rc = _app_handshake (app, &hcq_to_driver, &hcq_from_driver);
if (rc == -1)
fprintf (stderr, "ERROR: _app_handshake() failed\n");
goto exit_fn_on_error;
}
/%

* We now have 2 cmd queues for bi-directional communication; we finish
* the initialization of the app

*/

src_coord._export(app);

printf ("Sharing mesh meta-data\n");

_a = (doublex)src_coord.data();

meta_data = (meta_data_tx)_a;
meta_data->layout = (uint64_t)layout;
meta_data->num = (uint64_t)src_num;
meta_data->dim = (uint64_t)space_dim;

\n");

printf (“Notifying driver that we are up
rc = _app_notify_driver (hcq_from_driver);
if (rc == -1)

fprintf (stderr, "ERROR: _app_notify_driver() failed\n");
goto exit_fn_on_error;

}

printf ("Waiting for the ACK from the driver before we start running...\n");
rc = _app_wait (hcq_to_driver);

if (rc == -1)

{

fprintf (stderr, "ERROR: _app_wait() failed\n");
goto exit_fn_on_error;

/* We initialize the buffer for now for verification */
for (unsigned i = @; i < src_num; ++i)

coord[@] = (double) std::rand() / (double) RAND_MAX + comm_rank;
coord[1] = (double) st rand() / (double) RAND_MAX;

coord[2] = (double) std::rand() / (double) RAND_MAX;

/* Transfer this into the kernel execution %/

_ali+@*src_num] = coord[0];

_ali+lxsrc_num] = coord[1];

_ali+2xsrc_num] coord[2];
b
}
/*
* Now we start to execute, letting the driver coordinating everything.
*/

printf (“Starting computation...\n");
for (iter = @; iter < NB_ITERS; iter++)

rc = appA_iteration (src_coord, hcq_from_driver, hcq_to_driver);
if (rc !=0)

fprintf (stderr, "ERROR: appA_iteration() failed\n");
goto exit_fn_on_error;

}

printf ("All done, finalizaing...\n");

B e e e s




Sketch of Code for App
Execution Loop (appA
and appB similar)

« Computation — kernel using —

[ NON | src — gvh@livingstone:~ — vi appA.cpp — 73x46

gvh@livingstone... gvh@hal9000: ~... ... gvh@livingstone... ... gvh@livingstone... ... aF

Pinclude "dbapi.h"

#include "hobbes_db.h"
#include "demo_constants.h"
#include "demo_app.h"

hdb_db_t hobbes_master_db;

int

appA_iteration (Hobbes::vector<double> mesh,
hcg_handle_t hcg_from_driver,
hcq_handle_t hcg_to_driver)

int rc;

/* We run the computation on the mesh x/

the mesh (unmodified)

 Notify the driver that the
computation succeeded

« Wait for the driver —

Some new code required
to handle control transfers

2017-03-20/2017-03-23

\
\

S0S21, Davos, Switzerland

rc = _app_execute((doublex)mesh.data());
if (rc == -1)
{

fprintf (stderr, "ERROR: _app_execute() failed\n");
goto exit_fn_on_error;

b

/* Computation is completed, we let the driver know that the
mesh is ready to be transfered to appA *x/

—

rc = _app_notify_driver (hcq_from_driver);
if (rc == -1)
{

fprintf (stderr, "ERROR: _app_notify_driver() failed\n");
goto exit_fn_on_error;

}

/* We wait a signal from the driver to let us know that the
mesh can be used again for another iteration. */
—~> rc = _app_wait (hcq_to_driver);
if (rc == -1)
{
fprintf (stderr, "ERROR: _app_wait() failed\n");
goto exit_fn_on_error;

}
return 0;
exit_fn_on_error:

return -1;

}




Sketch of Code for DTK Driver

« Wait for appA to finish main computation
* Transform appA mesh to appB

 Signal appB and wait for it to finish main
computation

* Transform appB mesh to appA

* Signal appA to run main comp

Some different code required
to handle control transfers

2017-03-20/2017-03-23 S0S21, Davos, Switzerland

/

UN»

MPI_forum — gvh@livingstone:~/projects/hobbes/codes/h...

x8r@ranl... gvh@sal... root@livi... gvh@livin... aF
int
driver_iteration (char *appA,
char *appB,
Hobbes::vector<double> appA_vec,
Hobbes: :vector<double> appB_vec,
DTK_Map *dtk_map_appA_to_appB,
DTK_Map *dtk_map_appB_to_appA,
uint64_t src_layout,
uint64_t tgt_layout,
uint64_t dim,
hcq_handle_t hcq_to_appA,
hcq_handle_t hcq_from_appA,
hcq_handle_t hcq_to_appB,
hcq_handle_t hcq_from_appB)
{
int rc;
void *appA_buffer;
void *xappB_buffer;

S

}
1

fn_

appA_buffer
appB_buffer

appA_vec.data();
appB_vec.data();

/* We wait for the app to run and signal us so we can pull the data */

rc = _wait_for_app (appA, hcq_to_appA);

if (rc == -1)

{
fprintf (stderr, "ERROR: _wait_for_app() failed\n");
goto fn_exit_on_error;

}

fprintf (stdout, "Transforming the mesh...\n");
DTK_Map_apply (dtk_map_appA_to_appB,
(double constx)appA_buffer,
DTK_INTERLEAVED,
(doublex)appB_buffer,
DTK_INTERLEAVED,

(int)dim,
false);
rc = _signal_app (appB, hcq_from_appB);
if (rc == -1)
fprintf (stderr, "ERROR: _signal_app() failed\n");
goto fn_exit_on_error;
}
rc = _wait_for_app (appB, hcq_to_appB);
if (rc == -1)
{
fprintf (stderr, "ERROR: _wait_for_app() failed\n");
goto fn_exit_on_error;
}

fprintf (stdout, "Transforming the mesh...\n");
DTK_Map_apply (dtk_map_appB_to_appA,
(double constx)appB_buffer,
DTK_BLOCKED, //(DTK_Data_layout)tgt_layout,
(doublex)appA_buffer,
DTK_BLOCKED, //(DTK_Data_layout)src_layout,

(int)dim,
false);
rc = _signal_app (appA, hcq_from_appA);
if (rc == -1)
{
fprintf (stderr, "ERROR: _signal_app() failed\n");
goto fn_exit_on_error;
return 0;

exit_on_error:
return -1;




Implementation Details

rspace

% Virtual
Processes Containers Machines
« Operating system » Operating system * Operating system
—Single kernel —Single kernel —Multiple kernels
: : host/guest
 System view - System view (hosts | )
—Separate memory spaces —Isolate resources & « System view
context of processes —Virtualize the hardware &

 User view

control access

—Must keep multiple stacks * User view

straight

* General remarks
—Native performance

Kevin Pedretti will talk more about the
Hobbes environment and in particular
the VM-based implementation

2017-03-20/2017-03-23

— Ability to customize stack « User view
(above kernel) — Ability to fully customize
guest kernel/system

 General remarks

—Performance * General remarks
* Near native (w/o network —Performance
isolation via overlays) « 95-98% of native
—Examples —Examples
* Docker, LXC « Xen (type-l), KVM (type-lIl),
" Used in current demo —— Palacios (type-ll)

%OAK RIDGE
S0S21, Davos, Switzerland National Laboratory



Performance Comparison

Baseline (us) | Process (us) Container (us) | Virtual (ps)

48.3 + 20.8
9,986 *+ 692

Command queue 48.3 £ 20.8
appA -> appB mesh transformation 14,080 £ 852
appB -> appA mesh transformation 17,298 £ 143 13,570 £ 111
Complete application iteration 31,395 £ 660 25,132 + 312

Large standard deviations are due to a small
number of outliers. Not yet understood.

Demonstration mesh is very small, so
overheads will be accentuated.

Test mesh contains 3,000 3d points.
Timings averaged over 500 iterations (1000 for command queue).

37.1+£83.0
9,400 + 135
13,153 + 127
23,422 + 469

. + +
+
.
R A g i
‘ .

~ P2P Command Queue Timing

Outliers

Host platform: vintage (2011) 4x 8-core AMD Opteron @ 2.0 GHz, 128 GB RAM, RHEL 7.3

Container uses Docker with Ubuntu 16.04 guests.
Virtual uses Palacios with minimal Busybox guests.

2017-03-20/2017-03-23 S0S21, Davos, Switzerland

%

OAK RIDGE

National Laboratory



Next Steps

« Understand (and ameliorate) performance variability

« Extend to MPI parallel
— (Current demonstration is single node, due to delays in MPI support in Palacios)
— Should “just work”

* Integrate XEMEM allocation into Trilinos (for example) data structures

— Could be seen as small extension of what DTK already does, providing “adapters” for many
popular mesh libraries

* Demonstrate other composite application scenarios
— Simulation + analytics done in ROSS’15 paper
— Coupled multiphysics done here

» Look for use cases where resource partitioning/management is really useful

%OAK RIDGE

National Laboratory



And now for something
completely different.....
Reproducibility

%NOAK RIDGE
at

2017-03-20/2017-03-23 S0S21, Davos, Switzerland ional Laboratory




Reproducibility Terminology

* Reviewable Research: Descriptions of the research methods can be
independently assessed and judged credible (may not imply reproducibility)

* Replicable Research: Tools are made available that would allow one to
duplicate the results of the research (for example, running the author’s code to
produce the plots in the paper)

- Confirmable Research: Main conclusions of the research can be attained
independently, without the use of software provided by the author. (But using
complete description of algorithms, methodology, etc.)

« Auditable Research: Sufficient records have been archived so that research
can be defended later, if necessary or differences between independent
conformations resolved. Archive may be private

* Open or Reproducible Research: Auditable research made openly available

Terminology used by ACM, based on V. Stodden, D. H. Bailey, J. Borwein, R. J. LeVesque, W.
Rider, and W. Stein. 2013. Setting the Default to Reproducible: Reproducibility in Computational

and Experimental Mathematics. (2013). https://icerm.brown.edu/tw12-5-rcem/icerm_report.pdf

% OAK RIDGE
2017-03-20/2017-03-23 S0S21, Davos, Switzerland National Laboratory



Virtualization and Reproducibility Thought Experiment

* What does it take to “reproduce” an application?
— Dependent libraries
— Compilers? (code generation details)
— System software? (dependencies not in the form of libraries)
— OS kernel?
— Processor and other hardware?

» Containers and virtual machines can encapsulate some or all of these
— VMs could even allow hardware to be emulated

* This is not an original idea — much prior experimentation

- But the devil is in the details, and this is not yet routine

%OAK RIDGE
2017-03-20/2017-03-23 S0S21, Davos, Switzerland National Laboratory



Conclusions

» For HPC, virtualization techniques are primarily useful as a means to facilitate
packaging, distribution, and deployment of complex computational science
and engineering applications
— Encapsulate and isolate dependencies

— Eliminate the need for every user to build

* Reproducibility is an increasingly prominent concern that virtualization can help

* Application composition is another

— Single model and API supports process-, container-, or VM-based composition
» Uses only shared memory segments (XEMEM) and command queues

— Can be used with minimal intrusion into code
— High-performance virtualization techniques mean minimal performance impact

— Complements tools like Data Transfer Kit (DTK) which focus on coupling/exchange of data at
application level

%OAK RIDGE

National Laboratory



