
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

The	Hobbes
Node	Virtualization	Layer:	
Lessons	Learned	and
Path	Forward
March	23,	2017
SOS	21

Kevin	Pedretti
Center	for	Computing	Research
Sandia	National	Laboratories

SAND2017-3130	PE

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Lessons	Learned	+	Path	Forward

2

Why	Virtualization	in	Large-Scale	HPC?

§ Support	multiple	system	software	stacks	in	same	platform
§ Vendor’s	stack	good	for	physics	simulations,	data	science	difficult
§ Virtualization	adds	flexibility,	deploy	custom	images	on	demand
§ Not	just	user-space	containers,	need	ability	to	run	different	OS	kernels

§ Special-purpose	OS/R	stacks:	mOS,	McKernel,	Kitten,	FFMK/L4,	Argo,	…
§ Large-scale	emulation	experiments,	networks	+	systems

§ Leverage	industry	momentum,	student	mindshare

§ Virtualization	overhead	can	be	very	low
§ Use	hardware	support,	don’t	oversubscribe,	space	share,	

use	large	pages,	physically	contiguous	virtual	memory
§ Demonstrated	<	5%	overhead	in	practice	on	4K	nodes		(VEE’11)

Apps & Libraries

Runtime Systems

OS / VMM

Hardware

Compute Node
System Software Stack,

OS Bypass

Palacios
Hypervisor

§ Lots	of	new	hardware	+	software	challenges	to	tackle
§ Heterogeneous	cores	and	memory,	node-local	NVRAM,

complex	on-chip	networks,	power	management,	…
§ LWK	is	a	good	vehicle	for	exploring	solutions

§ Still	can’t	separate	OS	from	architecture
§ BlueGene used	embedded	cores	with	weak	MMU/TLB	->	Linux	had	issues
§ GPUs	don’t	run	an	OS,	but	do	have	a	20M+	SLOC	driver	stack	+	firmware
§ D.E.	Shaw	Anton,	Cray	MTA/XMT,	…	so	different	it	is	very	hard	to	run	a	

general	purpose	OS,	need	custom	system	software	development
§ New	hardware	capabilities,	like	heterogeneous	cores	and	memory,

and	non-cache-coherent	core	groups,	break	traditional	OS	assumptions

§ Ability	to	do	HPC-specific	things,	without	huge	battle	with	
Linux	“community”
§ Examples:	mmunotify,	huge	pages,	OOM	killer,	page	coloring,	XPMEM
§ Vendors	ship	“special	sauce”	Linux	kernel	patches,	not	upstreamable

Lightweight	Kernel	Drivers	Still	Valid

4

Kitten
Lightweight

Kernel

What	is	the	Hobbes
Node	Virtualization	Layer?	(NVL)

5

OS
Management
Infrastructure

Cross-OS
Composition
Mechanisms

Palacios
Hypervisor

Kitten
Lightweight

Kernel

Discrete	Component	Composition

8

Motivations:	Avoid	app->library	conversion	difficulty,
increase	mapping	flexibility,	allow	OS/R	specialization

In-Situ
Map Components
To Same Node

In-Transit
Map Components

To Different Nodes

Hobbes
Support Both Styles,

Eliminate the Distinction
From Programmer

Perspective
Hobbes Node Virt Layer
OS/R Infrastructure for

Configuring and Composing
On-Node OS/R stacks

Partitioned Compute Node

Enclave 4

Enclave 2Enclave 1

Physics
A

Physics
B

Visualization
Package

Uncertainty
Quantification

Enclave 3

Generalized	system	software	infrastructure	for	partitioning	a	compute	
node’s	resources	(CPUs,	memory,	disk,	NICs)	into	space-shared	enclaves,
launching	multiple	OS/R	instances	one	per	enclave,	and	portable	
interfaces	for selectively	relaxing	isolation for	cross-enclave	composition

What	is	the	Hobbes
Node	Virtualization	Layer?	(NVL)

6

OS
Management
Infrastructure

Cross-OS
Composition
Mechanisms

Palacios
Hypervisor

Kitten
Lightweight

Kernel

Discrete	Component	Composition

8

Motivations:	Avoid	app->library	conversion	difficulty,
increase	mapping	flexibility,	allow	OS/R	specialization

In-Situ
Map Components
To Same Node

In-Transit
Map Components

To Different Nodes

Hobbes
Support Both Styles,

Eliminate the Distinction
From Programmer

Perspective
Hobbes Node Virt Layer
OS/R Infrastructure for

Configuring and Composing
On-Node OS/R stacks

Partitioned Compute Node

Enclave 4

Enclave 2Enclave 1

Physics
A

Physics
B

Visualization
Package

Uncertainty
Quantification

Enclave 3

Unique	Aspects	of	Hobbes	NVL
§ Ability	to	run	native and	virtual OS/R	stacks	side	by	side
§ Cross	OS/R	stack	composition	mechanisms
§ Performance	isolation	design	goal

Compute Node

Applying	MPP	Partition	Model	to	the	Node

7

Rolf Riesen,
SOS 1, 1997

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Lessons	Learned	+	Path	Forward

8

9

Linux
(+Hobbes Drivers)

Compute Node Hardware

A
D

IO
S

Hobbes	
Runtime

Composed
Application

Operating
Systems

Analytics
Component

Kitten Co-Kernel
(Pisces)

XA
SM

XA
SM

A
D

IO
S

Simulation
Component

Leviathan Node Manager (Libhobbes, HostIO)

XEMEM (Inter-OS Shared Memory)

Palacios Palacios

Key	Ideas
§ No	one-size-fits-all	OS/R
§ Partition	node-level

resources	into	“enclaves”
§ Run	(potentially)	different

OS/R	stack	in	each	enclave

Challenges
§ Performance	isolation
§ Composition	mechanisms

Approach
§ Build	a	real,	working	system
§ Integrate	with	vendor’s	

infrastructure	+	extend

Hobbes	Node	Virtualization	Layer	Architecture
Enables Multiple Native + Virtual OS/R Stacks to Run Concurrently

Linux and LWK running
side by side as Co-kernels

Hobbes	NVL	Glue:
XEMEM

§ Maintains	simplicity	of	single	OS	programming
§ Processes	need	no	knowledge	of	enclave	topology
§ Challenges	Addressed:	Unique	Naming	and	Discoverability

10

www.prognosticlab.org/xemem

[Kocoloski et al., HPDC’15]

Enables Shared Memory Between Any Process in Any Enclave

Compute Node Hardware

Pisces	Resource	Management

§ Enables	multiple	native	OS/R	stacks	to	run	concurrently
§ Resources	hot-removed	from	host	Linux	and	given	to	Pisces
§ Kitten	modified	to	be	Pisces-aware,	access	assigned	resources	only
§ Minimal	kernel-to-kernel	communication,	via	IPIs	and	shared	mem

11

www.prognosticlab.org/pisces

[Ouyang et al., HPDC’15]

Operations Latency (ms)
Booting a Kitten co-kernel 265.98

Adding a single CPU core 33.74

Adding a 128MB memory block 82.66

Adding an Ethernet NIC 118.98

Fast Pisces Management Operations

12

Socket 0
Linux OS/R

Hadoop ML Benchmark

Socket 1
Kitten OS/R

Mantevo Mini-app

 0

 20

 40

 60

 80

 100

 44 45 46 47 48 49 50 51

C
D

F
(%

)

Runtime (seconds)

Co-VMM Native KVM

HPCCG

 0

 20

 40

 60

 80

 100

 79 80 81 82 83 84 85 86 87 88 89

C
D

F
(%

)

Runtime (seconds)

Co-VMM Native KVM

miniFE
 0

 20

 40

 60

 80

 100

 44 45 46 47 48 49 50 51

C
D

F
(%

)

Runtime (seconds)

Co-VMM Native KVMHobbes
Co-VMM

Native
Linux

Linux/
KVM

Performance Isolation for Hardware and System Software

[Ouyang et al., HPDC’15]

Pisces	Increases	Performance
and	Reduces	Variability www.prognosticlab.org/pisces

8 Nodes:

Hobbes	NVL	Glue:
Leviathan

13

www.prognosticlab.org/leviathan

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

Hobbes Node Virtualization Layer
System Software Infrastructure for Application Composition and Performance Isolation

Applications are evolving to a more compositional
approach, where an overall application workflow is a
composition of coupled simulation, analysis, and
tool components

Each component may have different Operating System
and Runtime (OS/R) requirements, in general there is
no "one-size-fits-all" solution

Co-locating application components can reduce data
movement, but may introduce cross-component
performance interference

Need infrastructure for application composition
Need to maintain performance isolation
Need to provide data sharing capabilities
Need to be deployable on production systems

*

*

Problem
*

>
>
>
>

Approach

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

Compute Node Hardware

Vendor's Linux OS
(+Hobbes Drivers)

Kitten Co-Kernel
(Hobbes)

Palacios, Linux VM
(Hobbes)

Leviathan Node Manager

...

X
EM

EM

X
EM

EM

X
EM

EM

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

A
D

IO
S

X
A

SM

M
P

I

Li
b-

H
ob

be
s

...

Simulation AnalysisToolApplication

Hobbes
Runtime

Operating
System

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Leverage experience with Kitten
Lightweight Kernel and Palacios
Virtual Machine Monitor [1]

Build infrastructure for application composition:

Complement vendor's Linux stack, add capability
Enable OS/R stack flexibiltiy through enclaves [2]
Create mechanisms for cross-enclave composition [3,4]

>
>
>

*

*

High-level view of the Hobbes Node Virtualization Layer compute node environment.
Three enclaves are shown, each running a different application component. The
components are composed together across enlaves using shared memory mappings
provided by XEMEM [3], copy-on-write memory snapshots provided by XASM [4], I/O
mechanisms provided by ADIOS, or by MPI. The Leviathan Node Manager provides a set
of tools and infrastructure needed to manage enclaves and application composition. [5]

[1] Palacios and Kitten: New High Performance Operating
Systems for Scalable Virtualized and Native
Supercomputing, IPDPS'10
[2] Achieving Performance Isolation with Lightweight Co-
Kernels, HPDC'15
[3] XEMEM: Efficient Shared Memory for Composed
Applications on Multi-OS/R Exascale Systems, HPDC'15
[4] A Cross-Enclave Composition Mechanism for Exascale,
ROSS'16
[5] Open-source software available at:
http://www.prognosticlab.org and
"git clone http://www.github.com/hobbesosr/nvl"

Hobbes Node Virtualization Layer

Leviathan Node Manager

Remora

Significance
Exascale systems are evolving to subsume the
functionality of several currently separate systems

> Infrastructure to enable custom system software
 environments for these different functions
> Support for application composition while
 maintaining performance isolation
> Interfaces and mechanisms for memory sharing
 to reduce data movement

References:

Hobbes provides:

Node Information Service

Hobbes Leviathan
On-node Database

Core
Records

Memory Records

Enclave State Records

The Node Information Service tracks the state of
all resources managed by Leviathan. The service
can be accessed directly by any enclave using the
Leviathan client library, libhobbes.a. It is
currently implemented using the WhiteDB NoSQL
in-memory database and exported to all enclaves
via an XEMEM shared memory mapping.

User-Level Resource
Management

CoresMemory

Physical hardware resources such as cores and
memory are offlined from the Linux host and
placed under the control of Leviathan. Clients
can then manage these resources from any
enclave. Information such as the NUMA topology
can be inspected to determine how to intelligently
allocate resources, all at user-level.

Enclave Lifecycle
Management

Leviathan is an intranode information and control service to enable the
management and configuration of multiple enclaves running on the same local
compute node. In general Leviathan implements a portable interface that is
accessible to each enclave instance. Leviathan provides features such as
command queues, node level information such as enclave topologies and
layouts, advertisements for global resources such as shared memory regions,
and general management capabilities such as heartbeat monitors and global
process IDs.

Inter-Enclave
Communication

Launch/Destroy Enclaves
Launch/Destroy Virtual Machines
Launch/Destroy Applications

The resources managed by Leviathan can be space
partitioned into multiple enclaves. Each enclave
runs a separate OS/R stack, for example a native
Kitten lightweight kernel instance or Linux virtual
machine. The Leviathan shell provides commands
for forming enclaves, loading virtual machines,
and launching applications into enclaves.

Leviathan offers a suite of communication APIs
and services for applications running in separate
enclaves. These APIs include built in services
such as command queues, a discovery service
to find exported shared memory regions, and a
generic RPC mechanism. Application-specific
communication services may also be created.

Simulation
Enclave

Analysis
Enclave

Linux-managed resources

Leviathan-managed resources

As part of our work on the Node Virtualization Layer (NVL) of the Hobbes
project we have provided a mechanism to compose MPI applications without
requiring invasive source code modifications. Remora provides MPI
components and support libraries which make it possible for MPI to
seemlessly integrate into the Hobbes NVL environment.

.

Node

Master Enclave

Hobbes Shell

Launcher

Analysis Enclaves

Linux

MPI

Linux

MPI

Simulation Enclaves

Kitten

MPI

Kitten

MPI

XEMEM Transport

Launcher

Remora Cross Enclave
MPI Runtime

Rank Spaces RPMI The Remora Process
Launcher

The Remora Cross OS MPI Runtimeis a novel runtime that is designed to replace
ORTE in OpenMPI. This runtime provides a set of services that minimize POSIX
dependencies to run across a wide variety of operating systems, especially
lightweight kernels like Kitten. Process startup, resource allocation and teardown
are doneby per-enclave control processes that execute in each enclave
environment, query the Leviathan information service and communicate via
XEMEM. Remora utilizes the Vader BTL, which is built on the XPMEM API and thus
is supported via XEMEM without modification.

Rank Spaces are a mechanism that Remora uses to make composition of
MPI applications possible via custom intracommunicators. Individual
applications maintain their original MPI_COMM_WORLD communicator.
However, the entire composed set of applications now have a new
intracommunicator MPI_COMM_UNIVERSE, which is the union of all
application communicators.

The Remora Process Management Infrastructure(RPMI) is an implementation
of the PMI client/server infrastructure, built over Leviathan. The RPMI
maintains a global database of mappings of processes to enclaves in an in-
memory database. Individual MPI processes query the Leviathan information
service in order to discover the global state of MPI applications.

The Remora Process Launcher launches composed applications using an
XML file which specifies a multilevel topology mapping applications to
communicators and enclaves to applications. The process launcher
extends the support provided by the Leviathan lifecycle management
tools to allow global rank assignment and spawn jobs across enclaves.

Master Enclave

Hobbes Shell

LauncherLauncher

Linux

MPI

Kitten

MPI

RPMIMPI_COMM_UNIVERSE
MPI_COMM_SIMULATION
MPI_COMM_ANALYTICS

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

Simulation
Process

Simulation
Process

Analysis
Process

Analysis
Process

Simulation
Process

Analysis
Process

Cross
OS

Runtime
RPMI

Cross
OS

Runtime
RPMI

<composition mpicomm="universe">
 <enclave name="kitten" num="2" mpicomm="simulation">
 <kernel>kitten.image</kernel>
 <cores count="1" />
 <memory size="32GB" />
 </enclave>

 <enclave name="linux" num="2" mpicomm="analysis">
 <kernel>linux.image</kernel>
 <cores count="1" />
 <memory size="16GB" />
 </enclave>

 <job>
 <app>
 <numprocs>2</numprocs>
 <exe_path>xhpcg</exe_path>
 <enclaves>
 <enclave>kitten-1</enclave>
 <enclave>kitten-2</enclave>
 </enclaves>
 </app>
 <app>
 <numprocs>2</numprocs>
 <exe_path>viztool</exe_path>
 <enclaves>
 <enclave>linux-1</enclave>
 <enclave>linux-2</enclave>
 </enclaves>
 </app>
 </job>

State of all resources tracked in
in-memory NoSQL database

User-level has explicit control of physical
resources managed by Leviathan

The Leviathan Hobbes shell provides commands
to form enclaves and launch applications

Built-in services for command queues,
discovery, global IDs, and generic host I/O

Generalized	interfaces	for	managing	and	configuring	multiple	
OS/R	enclaves	running	on	the	same	compute	node;	OS/R	agnostic

Leviathan	Hobbes	Shell

14

www.prognosticlab.org/leviathan
./hobbes
Hobbes Runtime Shell 0.1
Report Bugs to <jacklange@cs.pitt.edu>
Usage: hobbes <command> [args...]
Commands:

create_enclave -- Create Native Enclave
destroy_enclave -- Destroy Native Enclave
create_vm -- Create VM Enclave
destroy_vm -- Destroy VM Enclave
ping_enclave -- Ping an enclave
list_enclaves -- List all running enclaves
list_segments -- List all exported xemem segments
launch_app -- Launch an application in an enclave
list_apps -- List all applications
dump_cmd_queue -- Dump the command queue state for an enclave
cat_file -- 'cat' a file on an arbitrary enclave
cat_into_file -- 'cat' to a file on an arbitrary enclave
list_memory -- List the status of system memory
list_cpus -- List the status of local CPUs
list_pci -- List the status of PCI devices
assign_memory -- Assign memory to an Enclave
assign_cpus -- Assign CPUs to an Enclave
assign_pci -- Assign PCI device to an Enclave
remove_pci -- Remove PCI device from an Enclave
console -- Attach to an Enclave Console

Hobbes shell similar in
concept to numactl

§ XEMEM	transport	for	ADIOS
§ ADIOS:	High	performance	middleware	enabling	flexible	data	movement
§ Many	applications	already	using	it

§ XASM	– Cross	Enclave	Asynchronous	Shared	Memory
§ Adds	copy-on-write	semantics	to	XEMEM	memory	mappings
§ Producer	can	export	a	snapshot	and	then	continue	immediately

§ Data	Transfer	Kit	(DTK)	modified	to	use	Hobbes	XEMEM
§ Each	component	runs	in	a	separate	enclave
§ Driver	enclave	uses	XEMEM	to	access	each	component’s	memory

15

Hobbes	Composition	Mechanisms

DTK Driver
Enclave

App
Component A

Enclave

App
Component B

EnclaveXEMEM
Memory
Mapping

XEMEM
Memory
Mapping

ADIOS: [Kocoloski et al., ROSS’15]
XASM: [Evans et al., ROSS’16]

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Lessons	Learned	+	Path	Forward

16

Hobbes	on	Cray	XC
1. Load	Hobbes	drivers	on	each	compute	node

rmmod xpmem # Unload Cray xpmem
insmod petos.ko # Load Hobbes PetOS support module
insmod xpmem.ko ns=1 # Load Hobbes XEMEM /w nameserver
insmod pisces.ko # Load Hobbes Pisces framework

2. Start	Hobbes	daemon	on	each	compute	node
lnx_init --cpulist=0,16 ${@:1} &

3. Use	Hobbes	shell	to	load	Kitten	enclave	on	each	compute	node
hobbes create_enclave kitten_enclave.xml kitten-enclave-0

4. Build	app	like	normal,	using	Cray’s	normal	toolchain
5. Use	Hobbes	shell	with	aprun to	launch	application	on	Kitten

aprun –N 1 –n 32 ./hobbes launch_app kitten-enclave-0 \
IMB-MPI1.cray_mpich

17

Compute Node
Cray Linux Kitten LWK

MPI	PingPong Latency

18

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 4 16 64 256 1K 4K

M
ic

ro
se

co
n
d
s

Message Size (Bytes)

Cray Linux [Aries]
Kitten Co-Kernel [Aries]

Cray Linux [Gemini]
Kitten Co-Kernel [Gemini]

IMB 2017 Benchmark

J
OS Bypass =

~ Identical Latency
Kitten vs. Cray Linux

MPI	PingPong Bandwidth

19IMB 2017 Benchmark

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 4 16 64 256 1K 4K 16K 64K256K 1M 4M

G
B

yt
e
s

P
e
r

S
e
co

n
d

Message Size (Bytes)

Cray Linux [Aries]
Kitten Co-Kernel [Aries]

Cray Linux [Gemini]
Kitten Co-Kernel [Gemini]

J

L
Gemini Not
OS Bypass

Aries Is
OS Bypass
For Large
Messages

MPI	Collectives,	32	Nodes

20IMB 2017 Benchmark

 1

 4

 16

 64

 256

 1024

 4096

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

M
ic

ro
se

co
n

d
s

Message Size (Bytes)

Cray Linux [Aries]
Kitten Co-Kernel [Aries]

MPI Allreduce

 1

 4

 16

 64

 256

 1024

 4096

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

M
ic

ro
se

co
n
d
s

Message Size (Bytes)

Cray Linux [Aries]
Kitten Co-Kernel [Aries]

MPI Reduce

MPI BcastMPI Alltoall

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

1 4 16 64 256 1K 4K 16K 64K256K 1M 4M

M
ic

ro
se

co
n

d
s

Message Size (Bytes)

Cray Linux [Aries]
Kitten Co-Kernel [Aries]

 1

 4

 16

 64

 256

 1024

 4096

1 4 16 64 256 1K 4K 16K 64K256K 1M 4M

M
ic

ro
se

co
n

d
s

Message Size (Bytes)

Cray Linux [Aries]
Kitten Co-Kernel [Aries]

J J

JJ

Outline

§ Hobbes	Node	Virtualization	Layer	(NVL)
§ NVL	Components

§ Operating	Systems:	Linux,	Kitten,	and	Palacios
§ Glue:	XEMEM,	Pisces,	Leviathan
§ Composition:	ADIOS,	XASM,	XEMEM

§ Hobbes	on	Cray	XC
§ Lessons	Learned	+	Path	Forward

21

22

[Ouyang et al., HPDC’15]

Linux Baseline,
No Competing

Workload

Linux,
With Competing

Workload

Hobbes Kitten Co-Kernel,
With Competing

Workload

 0

 5

 10

 15

 20

 0 1 2 3 4 5

La
te

nc
y

(u
s)

Time (seconds)
 0 1 2 3 4 5

Time (seconds)
 0 1 2 3 4 5

Time (seconds)

Socket 0
Linux OS/R

Parallel Kernel Compile

Socket 1
Kitten OS/R

Selfish OS Noise Bench

Hobbes Provides Excellent Performance Isolation

1. Performance	isolation	is	not	just	about	hardware,
system	software	activities	matter	too

2. Networks	that	don’t	have	built-in	virtualization	
support	are	a	pain

23

§ Needed	way	to	share	high-speed	NIC	between	enclaves
§ HPC	hardware	generally	lacks	SR-IOV	support,	but	is	”sort	of”	self	

virtualizing	in	that	it	maps	the	NIC	into	multiple	processes

§ Had	to	develop	system	call	forwarding	layer,	part	of	Leviathan
§ Built	on	XEMEM,	command	queues,	and	cross	enclave	signals
§ Depends	on	control	plane	being	slow	path,	data	plane	being	OS	bypass
§ Handles	drivers	that	do	evil	things,	like	use	ioctl()	to	map	memory

Compute Node
Linux Kernel

Cray Aries Driver
Kitten Kernel

System Call Routing

Unmodified
ApplicationHobbes Shell

1. App makes
system call

2. Kitten reflects
to Hobbes shell

3. Shell
re-executes
system call

Thanks to
McKernel for
this approach

3. Vendors	are	still	interested	in	lightweight	kernels
(just	not	ours)

24

§ Intel	developing	mOS multi-kernel	(Linux	+	LWK)
§ RIKEN	+	Fujitsu	developing	McKernel multi-kernel	for	Post	K
§ Cloud	community	doing	a	ton	of	OS/R	work

§ Reducing	tail	latencies	through	Linux	patches	and	config tuning
§ Unikernels – sort	of	like	lightweight	kernels	for	cloud	workloads

§ Hobbes	NVL-like	infrastructure	provides	path	to	breaking	free	
from	the	“locked	down	vendor	OS/R	stack”
§ More	than	two	(as	many	OS/R	stacks	as	you	want,	native	or	virtual)
§ Generalized	interfaces	and	mechanisms	for	composition
§ Supports	new	use	cases	that	require	virtualization

github.com/hobbesosr/kitten

First time Sandia LWK on a Cray since Red Storm

4. Hardware	performance	is	becoming	more	variable

25

§ Many	sources	of	variability
§ Opportunistic	frequency	scaling	(Turbo)
§ Power	capping,	power	budget	shifting	between	CPU,	Memory,	GPU,	…
§ Thermal	throttling
§ Manufacturing	part-to-part	differences

Power&Caps&Provide&Predictable&Power&
!  Power&capping&appealing&due&to&max&power&draw&“guarantee”&

!  Recapture&(WallPlate'–'Pcap)&headroom&and&reallocate&elsewhere&
!  PotenAally&useful&for&doing&power&aware&scheduling&

!  P4state&control&appealing&due&to&predictable&performance,&power&unknown&

6&

 450

 500

 550

 600

 650

 700

 750

 800

 850

 220 240 260 280 300 320 340 360 380

G
FL

O
PS

Average Power (Watts)

Mutrino HPL 1-32, GFLOPS vs Avg-Power

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

P-State Sweep
(Fixed Performance, Variable Power)

Power Cap Sweep
(Fixed Power, Variable Performance)

 450

 500

 550

 600

 650

 700

 750

 800

 850

 200 220 240 260 280 300 320 340 360 380

G
FL

O
PS

Average Power (Watts)

Mutrino HPL 1-32 GFLOPS vs Avg-Power

Turbo On
--p-state 2300000
--p-state 2000000
--p-state 1900000
--p-state 1800000
--p-state 1700000
--p-state 1600000
--p-state 1500000
--p-state 1400000
--p-state 1300000
--p-state 1200000

Turbo P-states

Fixed P-states

Hitting the
Power Cap

Single-node HPL Variability Across 100 Nodes

Each point is a
node, avg 5 trials

with error bars

5. Users	really	want	containers

26

§ Docker	wasn’t	really	around	when	we	started	Hobbes
§ Now	all	the	rage,	users	eager	to	try	it	out
§ Good	application	packaging	and	delivery	vehicle

§ Mostly	solves	user-level	software	dependency	problems
§ Doesn’t	address	use	cases	that	require	full	virtual	machines

§ HPC	specific	adaptations,	NERSC	Shifter,	LBL	Singularity
§ Challenges

§ How	to	compose	across	containers	for	HPC	workflows
§ Achieving	performance	isolation	between	containers
§ Security,	portability	across	HPC	systems,	and	forward	compatibility

Hobbes Infrastructure Could Support Containers

Path	Forward
§ High-Level	Project	Outcomes

§ Generalized	system	software	infrastructure	
for	running	multiple	OS/R	stacks	on	a	node
and	building	cross-stack	compositions

§ Demonstrated	excellent	performance	isolation	between	enclaves
§ Demonstrated	how	to	integrate	with	a	vendor’s	existing	OS/R	stack

§ Hobbes	is	over,	but	some	work	continuing
§ Larger	scale	experiments,	LWK	evaluations
§ Analytics	+	Data	Science	on	HPC	systems

§ We	were	a	bit	ahead	of	the	game	with	Hobbes
§ Users	still	figuring	out	what	they	need	for	workflows	+	composition
§ Apps	we	were	trying	to	work	with	weren’t	really	ready	for	composition
§ Need	to	better	define	how	components	expose	and	share	information,

essential	for	effective	composition
27

Acknowledgements

§ Ron	Brightwell,	Noah	Evans,	Kurt	Ferreira,	Brian	Gaines,
Jay	Lofstead,	Shyamali Mukherjee	(Sandia)

§ Jack	Lange,	Brian	Kocoloski,	Jiannan Ouyang		(U.	Pittsburgh)
§ Patrick	Bridges,	Oscar	Mondragon	(U.	New	Mexico)
§ Peter	Dinda,	Kyle	Hale	(Northwestern)
§ Mike	Lang	(Los	Alamos)
§ Barney	Mccabe,	David	Bernholdt,	Hasan	Abbasi,	

Geoffroy Vallee,	Thomas	Naughton,	Stuart	Slattery	(Oak	Ridge)
§ Jai	Dayal (Georgia	Tech)

28

Extra	Slides

29

Hobbes	Compute	Node	OS/R

30

§ Example	above	shows	three	enclaves,	two	native	and	one	virtual	machine
§ Each	application	component	runs	in	its	own	enclave,	which	is	a	partition	of	

the	compute	node’s	resources	(CPUs,	memory,	NICs)		
§ Approach	leads	to	excellent	performance	isolation	across	enclaves
§ XEMEM	allows	user	level	memory	to	be	shared	across	enclaves,	useful	tool	

for	application	composition

Vendor	Linux
(e.g.,	Cray	Linux)

Compute	Node	Hardware

AD
IO
S

XE
M
EM

Hobbes	
Runtime

Application

Operating	
System

Kitten	Co-Kernel

TC
AS

M

TC
AS

M

AD
IO
S

XE
M
EM

Simulation	B

Leviathan Node Manager

Pisces
Kitten	Co-Kernel

TC
AS

M

AD
IO
S

XE
M
EM

Analysis	Tool

Palacios	VMM
Linux	VM

Simulation	A

HPDC’15:	“Achieving	Performance	Isolation	with	Lightweight	Co-Kernels”
HPDC’15:	“XEMEM:	Efficient	Shared	Memory	for	Composed	Applications”

Application	Workflows	are	Evolving
§ More	compositional	approach,	where	overall	application	is	a	

composition	of	coupled	simulation,	analysis,	and	tool	
components

§ Each	component	may	have	different	OS	and	Runtime	(OS/R)	
requirements,	in	general	there	is	no	“one-size-fits-all”	
solution

§ Co-locating	application	components	can	be	used	to	reduce	
data	movement,	but	may	introduce	cross	component	
performance	interference

§ Need	system	software	infrastructure	for	application	composition
§ Need	to	maintain	performance	isolation
§ Need	to	provide	cross-component	data	sharing	capabilities

Hobbes	NVL	Has	Multiple	Levels	of	Virtualization

Virtual Linux
Runtime

Native LWK
Environment

Guest OS/R
Stack

Optimized for
NVL

Guest OS/R
Stack

No NVL
Optimizations

Guest OS/R
Stack

NVL HW
Emulation

“Native”
Guest OS/R

Guest OS
modified to
cooperate
with NVL,
Runs on

Bare MetalHobbes NVL
(Node Virtualization Layer)

§ Existing	Hypervisors	typically	support	one	level,	strict	isolation
§ NVL	couples	LWK	“native”	runtime	with	guest	OS/R	stacks

Application Application Application Application Application

32

Hobbes	NVL	Provides	Composition	Mechanisms

Virtual Linux
Runtime

Native LWK
Environment

Guest OS/R
Stack

Optimized for
NVL

Guest OS/R
Stack

No NVL
Optimizations

Guest OS/R
Stack

NVL HW
Emulation

“Native”
Guest OS/R

Guest OS
modified to
cooperate
with NVL,
Runs on

Bare MetalHobbes NVL
(Node Virtualization Layer)

Inter-OS/R Stack
Memory Mapping / Sharing

(e.g., XPMEM)

Efficient Inter-OS/R
Stack Networking

(e.g., Portals4, Nessie)

Analysis
App

Simulation
App

Memory
Snapshots

(e.g., Multi-buffer)

Burst Buffer
Proxy

Simulation
App

I/O-based
Composition
(e.g., ADIOS)

Key/Value
Store

33

Leviathan	Enclave	Launch

34

www.prognosticlab.org/leviathan

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-a
Launching Enclave (/dev/pisces-enclave0) on CPU 2

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-b
Launching Enclave (/dev/pisces-enclave1) on CPU 4

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-c
Launching Enclave (/dev/pisces-enclave2) on CPU 6

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-d
Launching Enclave (/dev/pisces-enclave3) on CPU 29

./hobbes list_enclaves
5 Active Enclaves:
--
| ID | Enclave name | Type | State |
--
0	master	MASTER_ENCLAVE	Running
1	kitten-enclave-a	PISCES_ENCLAVE	Running
2	kitten-enclave-b	PISCES_ENCLAVE	Running
3	kitten-enclave-c	PISCES_ENCLAVE	Running
4	kitten-enclave-d	PISCES_ENCLAVE	Running
--

§ XEMEM	transport	for	ADIOS
§ ADIOS:	High	performance	middleware	enabling	flexible	data	movement
§ Many	applications	already	using	it

§ XASM	– Cross	Enclave	Asynchronous	Shared	Memory
§ Adds	copy-on-write	semantics	to	XEMEM	memory	mappings
§ Producer	can	export	a	snapshot	and	then	continue	immediately

35

Hobbes	Composition	Mechanisms
[Kocoloski et al., ROSS’15]

[Evans et al., ROSS’16]
Linux

Producer Consumer

Kitten

physical
memory

pool

Cow
Region

Pinned
SnapshotXemem Works	across	enclave	boundaries

§ Linux	to	Linux
§ Linux	to	Kitten
§ Kitten	to	Kitten
§ Native—Native,	Native—VM,	VM—VM

