

March 23, 2017 SOS 21

Exceptional service in the

national

interest

Kevin Pedretti Center for Computing Research Sandia National Laboratories

SAND2017-3130 PE

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000, SAND NO, 2011-XXXXP

Outline

- Hobbes Node Virtualization Layer (NVL)
- NVL Components
 - Operating Systems: Linux, Kitten, and Palacios
 - Glue: XEMEM, Pisces, Leviathan
 - Composition: ADIOS, XASM, XEMEM
- Hobbes on Cray XC
- Lessons Learned + Path Forward

Why Virtualization in Large-Scale HPC?

- Support multiple system software stacks in same platform
 - Vendor's stack good for physics simulations, data science difficult
 - Virtualization adds flexibility, deploy custom images on demand
 - Not just user-space containers, need ability to run different OS kernels
 - Special-purpose OS/R stacks: mOS, McKernel, Kitten, FFMK/L4, Argo, ...
 - Large-scale emulation experiments, networks + systems
 - Leverage industry momentum, student mindshare
- Virtualization overhead can be very low
 - Use hardware support, don't oversubscribe, space share, use large pages, physically contiguous virtual memory
 - Demonstrated < 5% overhead in practice on 4K nodes (VEE'11)

Lightweight Kernel Drivers Still Valid

- Lots of new hardware + software challenges to tackle
 - Heterogeneous cores and memory, node-local NVRAM, complex on-chip networks, power management, ...
 - LWK is a good vehicle for exploring solutions
- Still can't separate OS from architecture
 - BlueGene used embedded cores with weak MMU/TLB -> Linux had issues
 - GPUs don't run an OS, but do have a 20M+ SLOC driver stack + firmware
 - D.E. Shaw Anton, Cray MTA/XMT, ... so different it is very hard to run a general purpose OS, need custom system software development
 - New hardware capabilities, like heterogeneous cores and memory, and non-cache-coherent core groups, break traditional OS assumptions
- Ability to do HPC-specific things, without huge battle with Linux "community"
 - Examples: mmunotify, huge pages, OOM killer, page coloring, XPMEM
 - Vendors ship "special sauce" Linux kernel patches, not upstreamable

Lightweight Kernel

Generalized system software infrastructure for partitioning a compute node's resources (CPUs, memory, disk, NICs) into **space-shared enclaves**, launching **multiple OS/R instances** one per enclave, and portable interfaces for **selectively relaxing isolation** for cross-enclave composition

What is the Hobbes Node Virtualization Layer? (NVL)

Unique Aspects of Hobbes NVL

- Ability to run <u>native</u> and <u>virtual</u> OS/R stacks side by side
- Cross OS/R stack composition mechanisms
- Performance isolation design goal

Applying MPP Partition Model to the Node

Outline

- Hobbes Node Virtualization Layer (NVL)
- NVL Components
 - Operating Systems: Linux, Kitten, and Palacios
 - Glue: XEMEM, Pisces, Leviathan
 - Composition: ADIOS, XASM, XEMEM
- Hobbes on Cray XC
- Lessons Learned + Path Forward

Hobbes Node Virtualization Layer Architecture Enables Multiple Native + Virtual OS/R Stacks to Run Concurrently

Linux and LWK running side by side as Co-kernels

Key Ideas

- No one-size-fits-all OS/R
- Partition node-level resources into "enclaves"
- Run (potentially) different OS/R stack in each enclave

Challenges

- Performance isolation
- Composition mechanisms

Approach

- Build a real, working system
- Integrate with vendor's infrastructure + extend

Hobbes NVL Glue: XEMEM

Enables Shared Memory Between Any Process in Any Enclave

- Maintains simplicity of single OS programming
- Processes need no knowledge of enclave topology
- Challenges Addressed: Unique Naming and Discoverability

[Kocoloski et al., HPDC'15]

Pisces Resource Management

- Enables multiple native OS/R stacks to run concurrently
- Resources hot-removed from host Linux and given to Pisces
- Kitten modified to be Pisces-aware, access assigned resources only
- Minimal kernel-to-kernel communication, via IPIs and shared mem

Operations	Latency (ms)
Booting a Kitten co-kernel	265.98
Adding a single CPU core	33.74
Adding a 128MB memory block	82.66
Adding an Ethernet NIC	118.98

Fast Pisces Management Operations

[Ouyang et al., HPDC'15]

Pisces Increases Performance and Reduces Variability

Performance Isolation for Hardware and System Software

Hobbes NVL Glue: Leviathan

Generalized interfaces for managing and configuring multiple OS/R enclaves running on the same compute node; OS/R agnostic

Launch/Destroy Enclaves Launch/Destroy Virtual Machines Launch/Destroy Applications

State of all resources tracked in in-memory NoSQL database

User-level has explicit control of physical resources managed by Leviathan

The Leviathan Hobbes shell provides commands to form enclaves and launch applications

Built-in services for command queues, discovery, global IDs, and generic host I/O

Leviathan Hobbes Shell

./hobbes

Hobbes Runtime Shell 0.1

Report Bugs to <jacklange@cs.pitt.edu>

Usage: hobbes <command> [args...]

Commands:

create_enclave	 Create Native Enclave
destroy_enclave	 Destroy Native Enclave
create_vm	 Create VM Enclave
destroy_vm	 Destroy VM Enclave HODDes Shell Similar In
ping_enclave	 Ping an enclave CONCEPt to NUMACT
list_enclaves	 List all running enclaves
list segments	 List all exported xemem segments
launch_app	 Launch an application in an enclave
list_apps	 List all applications
dump_cmd_queue	 Dump the command queue state for an enclave
cat_file	 'cat' a file on an arbitrary enclave
cat_into_file	 'cat' to a file on an arbitrary enclave
list_memory	 List the status of system memory
list_cpus	 List the status of local CPUs
list_pci	 List the status of PCI devices
assign_memory	 Assign memory to an Enclave
assign_cpus	 Assign CPUs to an Enclave
assign_pci	 Assign PCI device to an Enclave
remove_pci	 Remove PCI device from an Enclave
console	 Attach to an Enclave Console 14

Hobbes Composition Mechanisms

XEMEM transport for ADIOS

ADIOS: [Kocoloski et al., ROSS'15] XASM: [Evans et al., ROSS'16]

- ADIOS: High performance middleware enabling flexible data movement
- Many applications already using it
- XASM Cross Enclave Asynchronous Shared Memory
 - Adds copy-on-write semantics to XEMEM memory mappings
 - Producer can export a snapshot and then continue immediately
- Data Transfer Kit (DTK) modified to use Hobbes XEMEM
 - Each component runs in a separate enclave
 - Driver enclave uses XEMEM to access each component's memory

Outline

- Hobbes Node Virtualization Layer (NVL)
- NVL Components
 - Operating Systems: Linux, Kitten, and Palacios
 - Glue: XEMEM, Pisces, Leviathan
 - Composition: ADIOS, XASM, XEMEM
- Hobbes on Cray XC
- Lessons Learned + Path Forward

Hobbes on Cray XC

1. Load Hobbes drivers on each compute node

rmmod xpmem	#	Unloa	ad Cray	xpmem
insmod petos.ko	#	Load	Hobbes	PetOS support module
insmod xpmem.ko ns=1	#	Load	Hobbes	XEMEM /w nameserver
insmod pisces.ko	#	Load	Hobbes	Pisces framework

- 2. Start Hobbes daemon on each compute node lnx init --cpulist=0,16 \${@:1} &
- 3. Use Hobbes shell to load Kitten enclave on each compute node hobbes create enclave kitten enclave.xml kitten-enclave-0
- Build app like normal, using Cray's normal toolchain 4.
- 5. Use Hobbes shell with aprun to launch application on Kitten aprun -N 1 -n 32 ./hobbes launch app kitten-enclave-0 \ IMB-MPI1.cray mpich

MPI PingPong Latency

MPI PingPong Bandwidth

MPI Collectives, 32 Nodes

MPI Reduce

MPI Bcast

Outline

- Hobbes Node Virtualization Layer (NVL)
- NVL Components
 - Operating Systems: Linux, Kitten, and Palacios
 - Glue: XEMEM, Pisces, Leviathan
 - Composition: ADIOS, XASM, XEMEM
- Hobbes on Cray XC
- Lessons Learned + Path Forward

1. Performance isolation is not just about hardware, system software activities matter too

Hobbes Provides Excellent Performance Isolation

2. Networks that don't have built-in virtualization support are a pain

- Needed way to share high-speed NIC between enclaves
 - HPC hardware generally lacks SR-IOV support, but is "sort of" self virtualizing in that it maps the NIC into multiple processes
- Had to develop system call forwarding layer, part of Leviathan
 - Built on XEMEM, command queues, and cross enclave signals
 - Depends on control plane being slow path, data plane being OS bypass
 - Handles drivers that do evil things, like use ioctl() to map memory

Thanks to McKernel for this approach

Vendors are still interested in lightweight kernels (just not ours)

- Intel developing mOS multi-kernel (Linux + LWK)
- RIKEN + Fujitsu developing McKernel multi-kernel for Post K
- Cloud community doing a ton of OS/R work
 - Reducing tail latencies through Linux patches and config tuning
 - Unikernels sort of like lightweight kernels for cloud workloads
- Hobbes NVL-like infrastructure provides path to breaking free from the "locked down vendor OS/R stack"
 - More than two (as many OS/R stacks as you want, native or virtual)
 - Generalized interfaces and mechanisms for composition
 - Supports new use cases that require virtualization

First time Sandia LWK on a Cray since Red Storm

4. Hardware performance is becoming more variable

- Many sources of variability
 - Opportunistic frequency scaling (Turbo)
 - Power capping, power budget shifting between CPU, Memory, GPU, ...
 - Thermal throttling
 - Manufacturing part-to-part differences

5. Users really want containers

- Docker wasn't really around when we started Hobbes
- Now all the rage, users eager to try it out
- Good application packaging and delivery vehicle
 - Mostly solves user-level software dependency problems
 - Doesn't address use cases that require full virtual machines
- HPC specific adaptations, NERSC Shifter, LBL Singularity
- Challenges
 - How to compose across containers for HPC workflows
 - Achieving performance isolation between containers
 - Security, portability across HPC systems, and forward compatibility

Hobbes Infrastructure Could Support Containers

Path Forward

- High-Level Project Outcomes
 - Generalized system software infrastructure for running multiple OS/R stacks on a node and building cross-stack compositions

- Demonstrated excellent performance isolation between enclaves
- Demonstrated how to integrate with a vendor's existing OS/R stack
- Hobbes is over, but some work continuing
 - Larger scale experiments, LWK evaluations
 - Analytics + Data Science on HPC systems
- We were a bit ahead of the game with Hobbes
 - Users still figuring out what they need for workflows + composition
 - Apps we were trying to work with weren't really ready for composition
 - Need to better define how components expose and share information, essential for effective composition

Acknowledgements

- Ron Brightwell, Noah Evans, Kurt Ferreira, Brian Gaines, Jay Lofstead, Shyamali Mukherjee (Sandia)
- Jack Lange, Brian Kocoloski, Jiannan Ouyang (U. Pittsburgh)
- Patrick Bridges, Oscar Mondragon (U. New Mexico)
- Peter Dinda, Kyle Hale (Northwestern)
- Mike Lang (Los Alamos)
- Barney Mccabe, David Bernholdt, Hasan Abbasi, Geoffroy Vallee, Thomas Naughton, Stuart Slattery (Oak Ridge)
- Jai Dayal (Georgia Tech)

Extra Slides

Hobbes Compute Node OS/R

- Example above shows three enclaves, two native and one virtual machine
- Each application component runs in its own enclave, which is a partition of the compute node's resources (CPUs, memory, NICs)
- Approach leads to excellent performance isolation across enclaves
- XEMEM allows user level memory to be shared across enclaves, useful tool for application composition

HPDC'15: "Achieving Performance Isolation with Lightweight Co-Kernels" HPDC'15: "XEMEM: Efficient Shared Memory for Composed Applications"

Application Workflows are Evolving

- More compositional approach, where overall application is a composition of coupled simulation, analysis, and tool components
- Each component may have different OS and Runtime (OS/R) requirements, in general there is no "one-size-fits-all" solution
- Co-locating application components can be used to reduce data movement, but may introduce cross component performance interference
 - Need system software infrastructure for application composition
 - Need to maintain performance isolation
 - Need to provide cross-component data sharing capabilities

Hobbes NVL Has Multiple Levels of Virtualization

- Existing Hypervisors typically support one level, strict isolation
- NVL couples LWK "native" runtime with guest OS/R stacks

Hobbes NVL Provides Composition Mechanisms

Leviathan Enclave Launch

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-a
Launching Enclave (/dev/pisces-enclave0) on CPU 2

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-b
Launching Enclave (/dev/pisces-enclave1) on CPU 4

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-c Launching Enclave (/dev/pisces-enclave2) on CPU 6

./hobbes create_enclave cray_kitten_enclave.xml kitten-enclave-d
Launching Enclave (/dev/pisces-enclave3) on CPU 29

./hobbes list_enclaves

5 Active Enclaves:

ID	Enclave name	Туре	State
0	<pre> master</pre>	MASTER_ENCLAVE	Running
1	kitten-enclave-a	PISCES_ENCLAVE	Running
2	kitten-enclave-b	PISCES_ENCLAVE	Running
3	kitten-enclave-c	PISCES_ENCLAVE	Running
4	kitten-enclave-d	PISCES_ENCLAVE	Running

Hobbes Composition Mechanisms

- XEMEM transport for ADIOS [Kocoloski et al., ROSS'15]
 - ADIOS: High performance middleware enabling flexible data movement
 - Many applications already using it
- XASM Cross Enclave Asynchronous Shared Memory
 - Adds copy-on-write semantics to XEMEM memory mappings
 - Producer can export a snapshot and then continue immediately

Works across enclave boundaries

- Linux to Linux
- Linux to Kitten
- Kitten to Kitten
- Native—Native, Native—VM, VM—VM

[Evans et al., ROSS'16]