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What is "big data"?

BIG = E-NORMI = EX (out of) NORMA (norm)
= EXTRA-ORDINARY LARGE

DATA = DATUS = GIVEN =Immediate, straightforward
DATA SCIENTISTS mediate big data and extract information

big data can be small or fat (small n, large p)
but typically is complex: not i.i.d. - not Gaussian - not linear
unstructured, distributed
smart data
value chain: information - knowledge - decisions - actions

Terry Speed, 2014:
"... big data refers to things one can do at a large scale, that cannot be done at a
smaller one, to extract new insights, or create new forms and value, in ways that change
markets, organizations, the relationships between governments, citizens an more."
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Communication network of 7 million nodes + 23 million ties
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Relationships =⇒ Adjacency matrix =⇒ Model

+ edge weights + covariates + time + spatial coordinates + . . .
= complex relational/network data
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Network data

social network: friendships
financial network: EU overnight interbank money transfer
economy: EU countries import-export
biology/ genetics networks: protein-protein interaction
communication network: CDR
information / knowledge network: patents
citation / collaboration network: wikipedia

Antonietta Mira ABC on HPC



What is the role of statistics in the Big Data era?

David Dunson, 2015:
"I would describe statistics as the science of variability, meaning that the main goal of
statistics is to develop methods and algorithms for the mathematical exploration,
elicitation and control of variability, and the uncertainty it generates. Inference and
uncertainty quantification are at the core of statistics and they have generated
correlated siblings like prediction, testing, controlling for dependence, confounding,
randomization."

Model-driven approach
�� ��Data Data-driven approach

�� ��Data-driven model approach
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What is the role of statistics in the Big Data era?
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Statistics challenges in the big/complex data era?

multi-resolution: separate signal from noise
dive for perceived signals in what would have been discarded as noise a decade ago
multi-phase: data arriving at my desk are almost never the original raw data
too dirty, too confidential, too large
pre-processing with different goals/assumptions
a single model is too simple to handle heterogeneity
multiplicity of models capture multiplicity of incompatible assumptions
multi-source
different sources and some not collected for inference purposes
sampling bias of observational / self-reported data
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Statistics challenges in the big/complex data era?

dimension reduction / summary / compression
error rate control
uncertainty quantification
assure coherence among different scales of time/space
support real-time decision making
complex data - complex models
big data - big errors
big methodological and computational challenges
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Why Bayesian statistics?

“A model-based revolution"
Sir Adrian Smith, DG Knowledge & Innovation, U. of London

Bayesian methods allow us to:
Think differently about estimating and interpreting unknowns
“what are possible values of this parameter?"
Combine prior information with the data
“what else do I know about this parameter and model?"
Regularize the LHD and average the posterior
Describe many sources of uncertainty in the model
“how sure am I about the inputs and outputs of my model?"
Analyze complex systems with hierarchical / multi-level models "Divide and
conquer strategy"
Perform model comparison and model averaging
Bayesian non-parametric
Bayesian computation (MCMC, Variational, INLA, ABC)
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Big picture of statistical inference

GIVEN:
Data = y = (y1, . . . , yn)

Statistical model which describes data, py |θ(y |θ),
indexed by Parameters = θ = (θ1, . . . , θd)

Observed data = yobs

Prior probability density function for θ, pθ
WANTED:

Some probabilistic statement about θ
which value of θ has, most likely, generated yobs ?
what is the mean value of θ given yobs?
which interval contains θ1 with probability 0.95 ?
. . .
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Different types of statistical models

1 Statistical model as family of pdfs, e.g.

py |θ(y |θ) =
n∏

i=1

1√
2πσ2

exp
(
− 1
2σ2 (yi − µ)2

)
, θ = (µ, σ)

2 Unnormalized statistical model
(the partition function, of py |θ is not known)

p0
y |θ(y |θ) ∝

n∏
i=1

exp
(
− 1
2σ2 (yi − µ)2

)
3 Simulator-based (generative/mechanistic) model

(shape and scale of py |θ are not known but sampling is possible if parameters are given)

y ∼ py |θ(y |θ), yi = µ+ σzi zi ∼ N (0, 1)
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Likelihood-Based Inference

Likelihood function: pdf of the observed data yobs as a function of the model
parameters

L(θ) ∝ py |θ(yobs |θ)

Plays a central role in statistical inference
Maximum likelihood estimation:

θ̂MLE = argmaxθ L(θ)

Bayesian inference:
pθ|y (θ|yobs) ∝ L(θ)pθ(θ)

Not available for unnormalized and simulator-based models
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Why simulator-based models?

Allow to use knowledge domain on how the data were generated without having to
make excessive compromises in the modeling
Neat interface with physical, social, medical, biological . . . models of data
Scale well with big data
No limits on the number of unobserved/latent variables
Easier to study the effect of interventions on simulator-based (mechanistic) models
rather than statistical models
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Examples

Astrophysics:
Simulating the formation of galaxies, stars, or planets
Evolutionary biology:
Simulating species evolution
Ecology:
Simulating species migration over time
Neuroscience:
Simulating neural circuits
Health science:
Simulating the spread of an infectious disease
Meteorology :
Simulating weather prediction
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Approximate Bayesian Computation (ABC) references

ABC in population genetics, Beaumont, Zhang, Balding - Genetics, 2002
Comparative evaluation of a new effective population size estimator based on
approximate Bayesian computation Tallmon, Luikart, Beaumont - Genetics, 2004
Inferring population history with DIY ABC: a user-friendly approach to ABC,
Cornuet, Santos, Beaumont, Robert, Marin, . . . - Bioinformatics, 2008
COMPUTER PROGRAMS: onesamp: a program to estimate effective population
size using ABC, Tallmon, Koyuk, Luikart, Beaumont - Molecular Ecology
Resources, 2008
Adaptive ABC, Beaumont, Cornuet, Marin, Robert - Biometrika, 2009
Approximate Bayesian computation without summary statistics: the case of
admixture, Sousa, Fritz, Beaumont, Chikhi - Genetics, 2009
Review: Marin, Statistics and Computing, 2012
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Principle behind ABC

Replace LHD, py (y |θ), by SUMMARY LHD pS(S(y)|θ)
where S(y) = summary statistics

But pS(S(y)|θ) is also unknown

Use an APPROXIMATE SUMMARY LHD: p̃S(S(y)|θ),
based on pseudo data y∗ generated from the model

The POSTERIOR is also approximate and summarized:
p̃S(θ|S(y)) ∝ p(θ)p̃S(S(y)|θ)
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Approximate Bayesian Computation (ABC)

ABC algorithms are iterative

The basic steps at each iteration are:
1 proposing a parameter θ∗,
2 simulating pseudo data y∗

3 accepting or rejecting the proposed θ∗ based on a comparison
of y∗ with the real observed data yobs

How to actually measure the discrepancy between the observed and the simulated
pseudo data is a major difficulty in these methods
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Motivating example

Technology generates new types of data and new modeling challenges
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Motivation

Systems of scientific and societal interest have large numbers of interacting
components
Representation as networks:
node = component, edge = interaction
E.G.: Friendship/Advisory network, Citation network, Webpage link network,
Protein-Protein interactions
Distinction between models of two things:

Models of network structure (e.g, Erdös-Rényi)
Models of dynamical processes on networks (e.g., SI model)

Why care about network structure?
Interplay between network structure and the behavior of dynamical processes on
networks (e.g., hubs in epidemics)
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Network Models

Distinction between two types of models of network structure:

Statistical models (e.g. ERGM,Goyal-Blitzstein-DeGruttola)
DATA DRIVEN

Pros: inference on model parameters; hypothesis testing; model selection
Cons: scalability; hard to incorporate domain knowledge

Mechanistic models (e.g. Price model)
KNOWLEDGE DRIVEN
assume that microscopic mechanisms that govern network formation and evolution
are known, ask what happens if we apply these mechanisms repeatedly

Pros: easy to incorporate domain knowledge, scalability
Cons: no inferential tools; no model comparison
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Mechanistic Model of Social and Contact Networks

From the perspective of time expenditure of subject i :
spend time with existing friends (a)
become friend of a friend (b)
make totally new friends (c)
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Mechanistic Model of Social and Contact Networks
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Mechanistic Model of Social and Contact Networks
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Approximate Bayesian Computation (ABC)

ABC rejection sampler is the simplest form of ABC

ABC rejection sampler

Sample parameter θ∗ from the prior p(θ)

Simulate dataset y∗ under the given model specified by θ∗: y∗ ∼ p(·|θ∗)
Accept θ∗ if ρ(y∗, y) ≤ ε

Distance measure ρ(y∗, y) determines the level of discrepancy between the
simulated data y∗ and the observed data y

The accepted θ∗ are approximately distributed according to the desired posterior
and, crucially, obtained without the need of explicitly evaluating the LHD

Antonietta Mira ABC on HPC



Approximate Bayesian Computation (ABC)

It may be unfeasible to compute the distance ρ(y∗, y) for high-dimensional data
Lower dimensional summary statistic S(y) to capture the relevant information in y

Comparison is done between S(y∗) and S(y): accept θ∗ if ρ(S(y∗),S(y)) ≤ ε

If S is sufficient wrt θ, then it contains all information in y about θ (by definition),
and using S(y) in place of the full dataset does not introduce any error

For most models it may be impossible to find sufficient statistics S , in which case
application relevant summary statistics need to be used

Use of non-sufficient summary statistics introduces a further level of approximation
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ABC for Mechanistic Network Models

ABC + mechanistic network models = generic + sound inferential framework

ABC rejection sampler for mechanistic network models
Observe an empirical graph G

Set up mechanistic network model M
Sample parameter θ∗ from the prior p(θ)

Simulate graph G ∗ from the mechanistic network model M using parameter θ∗

Accept θ∗ if ρ(S(G ∗),S(G )) ≤ ε using application relevant summaries S

Some simple network summaries: degree sequence, k-stars, subgraph counts,
centrality measures (betweenness, eigenvector, random walk, etc.), etc.
Can use KNN to identify points in the space of summary statistics close to S(G )

From Rejection-ABC to SMC-ABC by Drovandi + Pettitt (2015)
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Inference on δ and w

ABC + generative network model
Prior and posterior draws
True parameter values: δ = 0.3 and w = 0.6 (solid lines)
Posterior means: δ = 0.299 and w = 0.613 (dashed lines)
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Hypothesis Testing

H0 : δ > δ∗ VS H1 : δ ≤ δ∗ for some arbitrary δ∗ = 0.35

Bayesians compute P(H0|y) =
∫∞
θ∗ p(θ|y) dθ

The integral can be estimated by summing over a finite set of samples θt from the
posterior resulting in the estimator P̂(H0|y) = 1

T

∑T
t=1 1δt>δ∗

The posterior odds are defined as

P(H0|y)

P(H1|y)
=

P(H0|G )

P(H1|G )
=

P(H0|G )

1− P(H0|G )
≈ 0.032

0.968
≈ 0.033,

suggesting that H1 is 1/0.033 = 30.25 i.e. over 30 times more likely than H0
We can confidently reject the null HP
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Model Comparison

ABC for model comparison (Part I)

Observe an empirical graph G

Identify alternative possible mechanistic network models
M1 and M2

Draw model index from the model prior: τ1 = P(M = 1) = P(M = 2) = τ2

Draw parameter θ∗ from the prior p(θ|M)

Simulate graph G ∗ from the given mechanistic network model using parameter θ∗

Accept θ∗ if ρ(S(G ∗),S(G )) ≤ ε using any summaries S
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Model Comparison

ABC for model comparison (Part II)

Draw from the ABC approximation of the joint posterior p(θ,M|y)

Generate n independent pseudo-data sets for each such draw (ABC approximation
of the posterior predictive distribution)

Compute posterior error rate using the random forest classifier
i.e., how frequently it returns the true model index
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ABCpy: A parallelized python library for ABC

ABCpy: efficient library to automatically parallelize ABC algorithms with a modular
structure that allows

no-HPC experts and no-ABC experts from different domains to run ABC in parallel
USER-FRIENDLY

ABC experts to develop parallel versions of different algorithms
MODULAR
HPC experts to develop different parallelization frameworks for ABCpy
EXTENSIBLE

researchers to compare efficiency parallelized ABC algorithms
BENCHMARK
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ABCpy: Modular architecture - class diagram
Abstract classes
dark grey

Derived classes
light grey

Filled arrows
inheritance

No filled arrows
association

map-reduce framework
with master/worker
architecture

Model

Distance

Statistics

Distribution

ApproxLikelihood

- distance(x,y)

- statistics(x)

- sample from prior()

- simulate(k)

- pdf(x)

- sample(k)

- likelihood(θ)

Euclidean

LogReg

PenLogReg

Identity

WoodsRicker

HakkarainenLorenz

PenLogReg

SynLiklihood

Gaussian

StudentT

Ricker

Lorenz95

Uniform

MultiNormal

MultiStudentT

RejectionABC

PMCABC

PMC

Sampling Schemes Backend

BackendSpark

BackendDummy

- parallelize()

- map()

SABC

ABCsubsim

Model Selection

RandomForest

ABC-SMC
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Ricker Model: Stochastic population growth

The unobservable population size N(t) is

N(t) = rN(t − 1) exp
(

σe(t)

N(t − 1)

)
The observable population size y(t) over discrete time t = 0, . . . ,T is

y(t) ∼ Poisson(φN(t))

r is the growth rate, σ is the deviation of the innovation rate, and φ is a scaling
parameter

Goal: estimate the parameters r , σ, φ given the observed data
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Lorenz Model for Numerical Weather Prediction

Modification of weather prediction model of Lorenz (1995) when fast weather
variables are unobserved (Wilks, 2005)
(Y t

1 , . . . ,Y
t
40): slow weather variables observed at time t

Known: Initial value (Y 0
1 , . . . ,Y

0
40)

Goal: Simulate weather variables in future for numerical weather prediction with
t ∈ [0, 4] corresponding to 20 days
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Model: SDEs of Weather Variables

The weather variables follow the coupled Stochastic DE:
dy

(t)
k
dt = −y (t)

k−1(y
(t)
k−2 − y

(t)
k+1)− y

(t)
k + 10− g(y

(t)
k , θ) + η

(t)
k

g(y
(t)
k , θ) = deterministic parametrization of the net effect of the unobserved

(fast) variables on the observable ones

g(y
(t)
k , θ) =

∑2
i=1 θi

(
y

(t)
k

)i−1

η
(t)
k = stochastic forcing term representing the uncertainty due to forcing the fast
variables, updated for an interval ∆t

η
(t+∆t)
k = φη

(t)
k + (1− φ2)

1
2 e(t), t ∈ {0,∆t, . . . ,T∆t} η(0) = (1− φ2)

1
2 e(0) and

e(t) are indep. standard normal r.v.
we discretize the 20 days time interval in 5760 steps and use an SDE 4th order
solver
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Inference: Unknown coupling Parameters

Unknown parameters: (θ1, θ2)

Observed weather variables for t ∈ [0, 4] in T = 160 equal intervals simulated
using (θ1, θ2) = (2.1, 0.1)

time
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ABCpy: Linear scaling up

We consider:
The speedup SA(n) of a parallel algorithm A on n cores with respect to a baseline
(number of cores) m,m ≤ n, is the ratio of the algorithms running time t(m) on m
cores and the running time t(n) on n cores:
SA(n) = t(m)/t(n)

The efficiency EA(n) of an algorithm A on n cores is the speedup normalized by
the numbers of cores:
EA(n) = SA(n)/n
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PMCABC: Linear scaling up

0 500 1000 1500

n

0

2

4

6

8

10

12

S
A
(n
)

Lorenz
Ricker

Figure 1: Speedup for PMCABC
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Figure 2: Efficiency for PMCABC

Data simulation from Ricker model: milliseconds
Data simulation from Lorenz model: seconds
CSCS Piz Daint with Apache Spark: 1 master, 2 to 32 workers, 72 to 1152 cores
10 min at most (32 workers)
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PMC: Linear scaling up
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Figure 3: Speedup for PMC
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Figure 4: Efficiency for PMC

Amdahl’s law
Data simulation from Ricker model: milliseconds
Data simulation from Lorenz model: seconds
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