
Docker and Shifter: portable and performant scientific computing
SOS 21 Workshop, Davos, Switzerland

Lucas Benedicic, CSCS
March 21st, 2017



Outline

1. Background
2. HPC Use Cases
3. Data Science Use Cases
4. Conclusion

2



Background

3



About Docker

§ Process Container
§ It uses Linux kernel features to create semi-isolated “containers”.
§ Captures all application requirements.

§ Image Management
§ Easy-to-use recipe file.
§ Version-control driven image creation.

§ Environment
§ Pull and Pull images from a community-driven Hub

(i.e., DockerHub)

4



About Shifter (1)

§ A runtime to increase flexibility and usability of HPC systems by enabling the 
deployment of Docker-like Linux containers.

§ Originally developed at NERSC by D. Jacobsen and S. Canon.
§ Flexibility

§ Enable the definition of complex software stacks using different Linux flavors.
§ Develop an application on your laptop and run it on an HPC system.

§ Integration
§ Availability of shared resources (e.g., parallel file systems, accelerator devices

and network interfaces).
§ Compatibility

§ Integration with public image repositories, e.g., DockerHub.
§ Improving result reproducibility.

5



About Shifter (2)

§ But containers are hardware- and platform-agnostic by design
§ How do we go about accessing specialized hardware like GPUs?

§ CSCS and NVIDIA co-designed a solution that provides:
§ direct access to the GPU device characters;
§ automatic discovery of the required libraries at runtime;
§ NVIDIA’s DGX-1 software stack is based on this solution.

§ CSCS extended this design to the MPI stack.
§ Supports different versions MPICH-based implementations.

6



HPC Use Cases

7



$ nvidia-docker pull nvidia/cuda:8.0-devel-ubuntu14.04
8.0-devel-ubuntu14.04: Pulling from nvidia/cuda

$ nvidia-docker run nvidia/cuda:8.0-devel-ubuntu14.04 \
nbody –benchmark –device=0 –numbodies=2000000 –fp64

N-body simulation (1)

§ Let’s start with Docker on the laptop

8

§ Let’s now move to an HPC system with Shifter
$ shifterimg pull docker:nvidia/cuda:8.0-devel-ubuntu14.04
Pulling from nvidia/cuda …

$ srun shifter –-image=nvidia/cuda:8.0-devel-ubuntu14.04 \
nbody –benchmark –device=0 –numbodies=2000000 –fp64



N-body simulation (2)

Laptop* GPU cluster (K40) Multi-GPU cluster (K40-K80) Piz Daint (P100)
Native 18.34 858.09 1895.32 2733.01
Shifter 18.34 858.48 1895.17 2733.42

9

*Laptop run using nvidia-docker

§ Successful GPU-accelerated runs using the official CUDA image from 
DockerHub.

§ GFLOP/s performance of a double-precision, 200k-body simulation on different 
systems.



PyFR

§ Python based framework for solving advection-diffusion type problems on 
streaming architectures.

§ 2016 Gordon Bell Prize finalist.
§ Successful GPU- and MPI-accelerated runs using the same container image.
§ Parallel efficiency for a 10-GB test case on different systems.

10

Number of nodes Laptop GPU cluster (K40) Piz Daint (P100)
1 - 1.000 1.000
2 - 0.987 0.975
4 - - 0.964
8 - - 0.927
16 - - 0.874



Trilinos (1)

§ A collection of open-source software libraries, intended to be used as building 
blocks for the development of scientific applications.

§ Several supercomputing facilities provide a native version of Trilinos for their 
users.

§ Sean Deal, author of HPC Made Easy: Using Docker to Test and Distribute 
Trilinos, published a Docker container featuring Epetra with MPI support.

11



Trilinos (2)

§ Replaced the OpenMPI library in the container with vanilla MPICH.
§ Test problem: 12 MPI processes, 1000x1000 mesh nodes and a 25 points stencil.
§ Successful MPI run on a laptop (Docker)

12

$ docker run ethcscs/trilinos-epetrampi-benchmark mpirun -n 12 \
Epetra_SjdealBenchmark.exe 1000 1000 3 4 25 -v

Epetra::MpiCommEpetra::MpiCommEpetra::MpiCommEpetra::MpiCommEpetra in Trilinos
12.10.1

§ Successful MPI run on Cray XC50 (Shifter)

$ srun -n12 –N1 shifter --mpi --image=ethcscs/trilinos-epetrampi-benchmark \
Epetra_SjdealBenchmark.exe 1000 1000 3 4 25 –v

Epetra::MpiCommEpetra::MpiCommEpetra::MpiCommEpetra::MpiCommEpetra in Trilinos
12.10.1



Data Science Use Cases

13



TensorFlow (1)

§ Software library capable of building and training neural networks to detect and 
decipher patterns and correlations.

§ Successful GPU-accelerated runs using the official TensorFlow image on 
DockerHub.

§ Wall-clock times for two test cases on different systems.

14

Test case Laptop GPU cluster (K40) Piz Daint (P100)
MNIST, TF tutorial 613.24 104.92 35.74

CIFAR-10, 100k iterations 23359.00 8905.00 6246.00



Apache Spark

§ Designed around commodity clusters, i.e., Ethernet and local disks.
§ Does not scale well on parallel filesystems.
§ Shifter minimizes the file-system metadata overhead.

15



Conclusion

16



Conclusion

§ Containers are here to stay.
§ The Docker-Shifter combo takes us closer to the turn-key, cloud-based like 

computing with scalability and high-performance.
§ The showed use cases highlighted:

§ bare metal provisioning;
§ ready to use, high-performance software stacks;
§ network file systems support;
§ access to hardware accelerators like GPUs and high-speed interconnect through MPI.

17



Thank you for you attention

18


