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Tremendous Recent Rise in Interest by the Japanese
Government on Big Data, DL, Al, and loT

 Three national centers on Big Data and Al launched

by three competing Ministries for FY 2016 (Apr 2015-)

— METI — AIRC (Artificial Intelligence Research Center): AIST (AIST
internal budget + > $200 million FY 2017), April 2015
e Broad Al/BD/IoT, industry focus

— MEXT — AIP (Artificial Intelligence Platform): Riken and other
institutions (S~50 mil), April 2016

* A separate Post-K related Al funding as well.
* Narrowly focused on DNN

— MOST = Universal Communication Lab: NICT ($S50~55 mil)

* Brain —related Al

— S1 billion commitment on inter-ministry Al research over
10 years

Vice Minsiter
Tsuchiya@MEXT
Annoucing AIP
estabishment



_ Resource Reqwrements for Deep Learning
[Source: Preferred Network Japan Inc.]

To complete the learning phase in one day
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The current status of Al & Big Data in Japan e

We need the triage of advanced algorithms/infrastructure/data but we lack

@’

the cutting edge infrastructure dedicated to Al & Big Data (c.f. HPC) AiRC
Al Venture Startups
Joint ~aa AIST Qf’ b < ‘] > R&D ML Big Companies Al/BD
RWBC | */isse B somes AL B> :
Open Innov. __ AIST-AIRC | ATRC P Nrefe re Alg orithms .R&D (aiso Science)
Lab (OIL) || RRAIEAF tworks ) SW TLAB e Seeking Innovative
(Director: Matsuoka) B p ENSG IT LAB:,RATORY NG _ H i
o t : t A’/BD Centers & ‘ qb HEIF WAL Appllcatlon of Al &
Riken NLI/ = nicT- Labs in National X DeNA Data
aien AP @ UCR/ UCRI |l.abs& Universities

@ Use of Massive Scale Data now

Massive Rise in Computing Wasted

SAZ}RA Temet Requirements (1 AI PF/person'-’) DENSO Petabytes of Drive FAsORshankvsy.
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In HPC, Cloud continues to
be insufficient for cutting
edge research =>

dedicated SCs dominate & AI&Data
racing to Exascale Infrastructures Training

©

Web access and SoftBank ~ NTT

" merchandice

Massive “Big” Data in . loT Communication,
& “Big%Data

location & other data



Example: Tokyo Tech IT-Drug Discovery Factory =4

Simulation & Big Data & AI at Top HPC Scale
(Tonomachi, Kawasaki-city: planned 2017, PI Yutaka Akiyama)

Drug Discovery platform powered by
Supercomputing and Machine Learning

Application projects
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(®Drug Target selection system
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( @Glide-based Virtual Screening

TSUBAME’s GPU-environment allows
World’s top-tier Virtual Screening
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( ®Novel Algorithms for fast virtual )
screening against huge databases
Fragment-based efficient algorithm

designed for 100-millions cmpds data 4
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New Drug Discovery platform especially for
specialty peptide and nucl. acids.
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Multi-Petaflops Compute
Peta~Exabytes Data
Processing Continuously

Cutting Edge, Large-
Scale HPC & BD/AI
Infrastructure
Absolutely Necessary

Investments from JP Govt., Tokyo Tech. (TSUBAME SC)

Muninciple Govt (Kawasaki), JP & US Pharma



TSUBAME-KFC/DL: TSUBAME3 Prototype [ICPADS2014]

Oil Immersive Cooling+ Hot Water Cooling + High Density Packaging + Fine-
Grained Power Monitoring and Control, upgrade to /DL Oct. 2015

A High Temperature Cooling Cooling Tower :
> Oil koop 35~45°C Water 25~35°C

= Water Loop 25~35°C

c.f. TSUBAMEZ 7 17°C)
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ABCI Prototype: AIST Al Cloud (AAIC)
March 2017 (System Vendor: NEC)

e 400x NVIDIA Tesla P100s and Infiniband EDR accelerate various Al workloads
including ML (Machine Learning) and DL (Deep Learning).

« Advanced data analytics leveraged by 4PiB shared Big Data Storage and Apache
Spark w/ its ecosystem.

SINETS _
Internet Firewall :
Connection » FortiGate 3815D x2 :

 FortiAnalyzer 1000E x2 )

10-100GbE

GbE or 10GbE

Service and Manage&ent Network

AI Computation System 400 Pascal GPUs Large Capacity Storage System

(Computation Nodes (w/GPU) x50 30TB Memory DDN SFA14K
* Intel Xeon E5 v4 x2 56TB SSD « File server (w/10GbEx2,
* NVIDIA Tesla P100 (NVLink) x8 IB EDRx4) x4

Interactive Nodes . 8TB 7.2Krpm NL-SAS S 4PIB effective
X2 HDD x730

[ Mgmt & Service } . GRIDScaler (GPFS) RW100GB/s
Nodes x16 \ D

Computation Nodes (w/o GPU) x68
» Intel Xeon E5 v4 x2
.+ 256GiB Memory, 480GB SSD

IB EDR (100Gbps)

Computation Network Bi-direction 200Gbps

Mellanox CS7520 Director Switch Full bi-section bandwidth
» EDR (100Gbps) x216

IB EDR (100Gbps)




2017 Q2 TSUBAME3.0 Leading Machine Towards Exa & Big Data

1.“Everybody’s Supercomputer” - High Performance (12~24 DP Petaflops, 125~325TB/s Mem,
55~185Tbit/s NW), innovative high cost/performance packaging & design, in mere 180m?Z...

2.“Extreme Green” — ~10GFlops/W power-efficient architecture, system-wide power control,
advanced cooling, future energy reservoir load leveling & energy recovery

3.“Big Data Convergence” — Extreme high BW &capacity, deep memory

hierarchy, extreme 1/0 acceleration, Big Data SW Stack 2013 -t —
for machine learning, graph processing, ... TSUBAME2.5 R
" . . . upgrade ‘

4.“Cloud SC c.iynamlc deplpymer!t, con.talner based 5 7PE DEP 2016 TSUBAME3.042.5
node co-location & dynamic configuration, resource /17.1PF SFP ~20PF(DFP) 4~5PB/s Mem BW

20% power 10GFlops/W power efficiency

elasticity, assimilation of public clouds...
reduction

) ) Big Data & Cloud Convergence
5.“Transparency” - full monitoring & J J
y

user visibility of machine
& job state,
accountability

via reproducibility

2010 TSUBAME2.0
2.4 Petaflops #4 World
“Greenest Production SC”

2006 TSUBAMEL.0 A D= |Large Scale Slmulatlon
80 Teraflops, #1 Asia #7 World |+ e 2013 TSUBAME-KFC Big Data Analytics
“Everybody’s Supercomputer” 2011 ACM Gordon Bell Prize #1 Green 500 Industrial Aﬁps



http://www.new.facebook.com/album.php?profile&id=20531316728
http://www.new.facebook.com/album.php?profile&id=20531316728

Overview of TSUBAMES.0

Full Operations
Aug. 2017

Full Bisection Bandwidgh

Intel Omni-Path Interconnect. 4 ports/node

Full Bisection / 432 Terabits/s bidirectional

>\ ~x2 BW of entire Internet backbone traffic
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ompute Nodes SGI ICE XA + New Blade
Intel Xeon CPU x 24+NVIDIA Pascal GPUx4 (NV-Link)
256GB memory 2TB Intel NVMe SSD
47.2 Al-Petaflops, 12.1 Petaflops
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TSUBAME3.0 Compute Node SGI ICE-XA, a New GPU Compute Blade Co-
Designed by SGI and Tokyo Tech GSIC

SGI ICE XA Infrastructure

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Intel Omnipath Spine Switch, Full Bisection Fat Tre Network
/s Bidirectional for HP
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Switch Blade
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HPC and DNN

48-Port Intel Omni-Path
Switch ASIC
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Switch Blade

ICE XA Omni-Path
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48-Port Intel Omni-Path
Switch ASIC
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x60 sets
(540 nodes)

e e e . o e e e e o = e -

16 PCI 16 PCI
sspp dbdle |1 =5 PLX =] OPA HFI
v
DIMM |« : 16 PCI 16 PCle
| DIMM_|« -
CPUOQ [«
DIMM |« ' GPUO GPU 1
DIMM |« :
QPI€ § NVLinki I
DIMM |« ;
DIMM *——1 0 1 e GPU 2 GPU 3
DIMM |« -
x16 PCle| X16 PCle
DIMM |« :
4 . 6 PCI
Octane 4_f Jero PLX OPA HFI
pir/na x4 PCIej
(Iif/t'\zjlne x16 PCle > OPA HFI

Ultra high performance & bandwidth “Fat Node”

High Performance: 4 SXM2(NVLink) NVIDIA Pascal
P100 GPU + 2 Intel Xeon 84 AI-TFLops
High Network Bandwidth — Intel Omnipath 100GBps
X 4 = 400Gbps (100Gbps per GPU)
High I/O Bandwidth - Intel 2 TeraByte NVMe
e >1PB & 1.5~2TB/s system total
* Future Octane 3D-Xpoint memory
Petabyte or more directly accessible
Ultra High Density, Hot Water Cooled Blades
e 36 blades/ rack = 144 GPU + 72 CPU, 50-60KW,
x10 thermals c.f. IDC



TSUBAME3.0 SGI [CE-XA Blade (new
- Plan to become a future HPE product




TSUBAM

- 3.0 Datacenter

Ay ™

15 SGI [CE-XA Racks
2 Network Racks

3 DDN Storage Racks
20 Total Racks

Compute racks cooled with
32 degrees warm water,
yearound ambient cooling
PUE = 1.033



Japanese Open Supercomputing Sites Aug. 2017 (

Peak System Double FP | Nov. 2016
Rank Rpeak Top500

10

U-Tokyo/Tsukuba U
JCAHP

Tokyo Institute of
Technology GSIC

Riken AICS

Tokyo Institute of
Technology GSIC

Kyoto University

Japan Aerospace
eXploration Agency

Information Tech.
Center, Nagoya U

National Inst. for
Fusion Science(NIFS)

Japan Atomic Energy
Agency (JAEA)

AIST Al Research
Center (AIRC)

Oakforest-PACS - PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C
1.4GHz, Intel Omni-Path

TSUBAME 3.0 - HPE/SGI ICE-XA custom NVIDIA Pascal P100 + Intel

Xeon, Intel OmniPath

K computer, SPARC64 VllIfx 2.0GHz, Tofu interconnect
Fujitsu

TSUBAME 2.5 - Cluster Platform SL390s G7, Xeon X5670 6C
2.93GHz, Infiniband QDR, NVIDIA K20x NEC/HPE

Camphor 2 — Cray XC40 Intel Xeon Phi 68C 1.4Ghz

SORA-MA - Fujitsu PRIMEHPC FX100, SPARC64 XIfx 32C 1.98GHz,
Tofu interconnect 2

Fujitsu PRIMEHPC FX100, SPARC64 Xlfx 32C 2.2GHz, Tofu
interconnect 2

Plasma Simulator - Fujitsu PRIMEHPC FX100, SPARC64 XIfx 32C
1.98GHz, Tofu interconnect 2

SGI ICE X, Xeon E5-2680v3 12C 2.5GHz, Infiniband FDR

AAIC (AIST Al Cloud) — NEC/SMC Cluster, NVIDIA Pascal P100 + Intel
Xeon, Infiniband EDR

24.9

12.1

11.3

5.71

5.48
3.48

3.24

2.62

2.41

2.2

NA

40

33
30

35

48

54

NA



GFLOPS

DFP 64bit SFP 32bit 16bit

Simulation
4

Computer Graphics

Gaming l

Big Data

e P100-fp1l6 e====P100 ===K40

16000
14000
12000
10000
8000
6000
4000

2000

0 I T T T T T T T T 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Matrix Dimension (m=n=k)

NVIDIA Pascal |
P100 DGEMM Riken K
Performane

Tokyo Tech GSIC leads Japan in aggregated
Al-capable FLOPS TSUBAME3+2.5+KFC, in
all Supercomuters and CloudsNV

Site Comparisons of AI-FP Perfs

T-KFC
65.8 Petaflops i
Tokyo Tech

e s |

~6700 GPUs + ~4000 CPUs

U-Tokyo Oakforest-PACS (JCAH PC).‘
T Reedbush(U&H)

O 10 20 30 40 50 60 70
PFLOPS



Institutions
Companies 4

Technol

Joint re

Matsuoka : Joint
appointment as
“Designated” Fellow
since July 2017

ansferApplication Domair

Planning/Business Team

Al Research Center (AIRC), AIST
Now > 300+ FTEs

. Manufacturing Big Sciences
Health Care Innovative . . . .
Industrial robots Bio-Medical Sciences

Retailin
Elderly Care : Automobile Material Sciences

Standard Tasks
A AT DI andard Data

Security
etwork Services
Communication

echno transfer
i ferprises

Planning/Business Team

S

Ce

Image Recognition
3D Object recognition

Planning
Control

NLP, NLU Behavior Prediction
Text mining ining & Modelingl Recommend

Brain Inspired Al Data-Knowledge integration Al

Model of

Model Of Mode| of
Hippocampus Cerebral cortex

Basal ganglia Ontology .
gane e Logic & Probabilistic Bayesian net ...

-_— S, Modeling
Core Center of Al for Industry-Academia Co-operation




i National Institute for
National Intide o .
Advancod lndusinal Science Advanced Industrial
’ Science and Technology
MITEGEAN

EERIRMTHAETAHZRAR (AIST)

Ministry of Economy, Trade and Industry

f; T T

Ministry of Economics
Trade and Industry (METI)

AIST Artificial
Intelligence

Research
Center (AIRC)

Application Area

Natural Langauge @’
Processing oot
Robotics NIRC
Security

Joing Organization@QOdaiba

Joint
Research on
Al / Big Data
and
applications

YAaHOO!

JAPAN

HE/DOARTM)
— BISME (EHRHHZHED
— BISMER (EHRTSHED

— TNGAZRERR (EMTOTTREED

— DINBRE

SR (ERHAHARor RT X Director: Satoshi Matsuoka

TSUBAME

Tokyo Institute of Technology

GSIC (HPC)

Resources and Acceleration of

AIST-TokyoTech ’

” Real World Big Data
Laboratory (OIL) ‘

/Al Open Innovation

Industrial
Collaboration in data,
applications

Industry

Basic Research
in Big Data / Al
algorithms and
methodologies

TLAB prnvsoee

DENSO IT LABORATORY, INC.

ITCS
Departments

Other Big Data / Al

research organizations
and proposals
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METI AIST-AIRC ABCI

as the worlds first large—scale OPEN Al Infrastructure
 ABCI: Al Bridging Cloud Infrastructure

e Top—Level SC compute & data capability for DNN (1307200 Al-Petaflops)
e Open Public & Dedicated infrastructure for Al & Big Data Algorithms,

AIRC

Software and Applications

(« 130~200 Al-Petaflops )
e < 3MW Power

e <1.1Avg. PUE

ST « Operational 2017Q4
a4 AIST \_ —2018Q1 -

TTUTE OF
AIVARID NS TRAL SCHNCE ARG TIECHH L OO AT)

Univ. Tokyo Kashiwa Campus

IVERMTY OKYD
amionaL instirute oF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) -



ABCI - 2017Q4~ 2018Q1

Extreme computing power
- w/ 130~200 AI-PFlops for AI/ML especially DNN

- x1 million speedup over high-end PC: 1 Day training for
3000-Year DNN training job

— TSUBAME-KFC (1.4 AI-Pflops) x 90 users (T2 avg)

Big Data and HPC converged modern design

- For advanced data analytics (Big Data) and scientific E B
simulation (HPC), etc. \ :

- Leverage Tokyo Tech’s “TSUBAME3” design, but
differences/enhancements being AI/BD centric

Ultra high bandwidth and low latency in memory,
network, and storage

— For accelerating various AI/BD workloads

— Data-centric architecture, optimizes data movement
Big Data/AI and HPC SW Stack Convergence

— Incl. results from JST-CREST EBD

- Wide contributions from the PC Cluster
community desirable.

nanonaL nstrute of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

18



AIST
®
G&J

ABCI Cloud Infrastructure

e Ultra-dense IDC design from ground-up

- Custom inexpensive lightweight “warehouse” building w/ ABCI AI-IDC CG Image
substantial earthquake tolerance

- x20 thermal density of standard IDC el
e Extreme green e |
- Ambient warm liquid cooling, large Li-ion battery storage, and

high-efficiency power supplies, etc. Y
- Commoditizing supercomputer cooling technal
Clouds (60KW/rack)
e Cloud ecosystem
- Wide-ranging Big Data and HPC standard software stacks
e Advanced cloud-based operation

- Incl. dynamic deployment, container-based virtualized
provisioning, multitenant partitioning, and automatic failure
recovery, etc.

- Joining HPC and Cloud Software stack for real

wstirute o ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST) 19



AIST Q;&_
ABCI Procurement Benchmarks CRinC

e Big Data Benchmarks e AI/ML Benchmarks

— (SPEC CPU Rate) - Low precision GEMM
e CNN Kernel, defines “Al-Flops”

- Graph 500 - Single Node CNN
- MinuteSort e AlexNet and GooglLeNet
- Node Local Storage 1I/0 M‘ IIES\I/\IRCC?()léNDNataSGt
— MUItI-NOode
— Parallel FS 1I/0 . Caffos MPI
- Large Memory CNN
No traditional HPC » Convnet on Chainer
. . - RNN / LSTM
Simulation Benchmarks e To be determined

nanonaL nstrute of ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)




Software Ecosystem for HPC in Al

Different SW Ecosystem between HPC and Al/BD/Cloud
How to achieve convergence—for real, for rapid tech transfer

Existing Clouds Application Layer

BD/ALL SerAplications e HPC Jobs are Batch-Oriented, resource control by MPI

| Cloud Jobs often Interactive w/resource control REST APIs

Existing Supercomputers

HPC User Code

Machine Learnig Grapgrgrcr)‘(;?/ssing
MLlib/ p

. Giraph
Mahout/Chainer /ScaleGraph

System Software Layer

Cloud employs High Productivity Languages but

performance neglected, focus on data analytics and
dynamic frequent changes

] « HPC employs High Performance Languages but requires

Ninja Programmers, low productivity. Kernels & compilers

SQL/Non-SQL
Hive/Pig R

E Java - Scala - Python + IDL

MapReduce Framework well tuned & result shared by many programs, less rewrite
L Spark/Hadoop ) . .
p .+ Cloud focused on databases and data manipulation workflow
RDB CloudDB/NoSQL e HPC focused on compute kernels, even for data processing.
PostgresQL } { Hbase/Cassandra/MondoDB Jobs scales to thousands of jobs, thus debugging and
- o performance tuning
" Distributed Filesysem Coordination Service e Cloud requires purpose-specific computing/data environment
HDFS & Object Store L ZooKeeper as well as their mutual isolation & security

« HPC requires environment for fast & lean use of resources,

Workflow
Systems

Numerical Libraries

LAPACK, FFTW Various DSLs

Fortran - C - C++ + IDL

MPI - OpenMP/ACC - CUDA/OpenCL

Parallel Debuggers and Profilers

Batch Job Schedulers
PBS Pro, Slurm, UGE

Parallel Filesystem
Lustre, GPFS,

, Container(Docker), Cloud Services . . ;
(OpenStack) but on modern machines require considerable system
software support 0S Laver
Linux OS y Linux OS
Etherne Hardware Layer X86 +
TOR Swtiches " o InfiniBand/OPA .
: » Cloud HW based on Web Server “commaodity” x86 servers, : : High Performance Accelerators
Hiah Local Node x86 CPU TR ! High Capacity e
g Storage distributed storage on nodes assuming REST API access Low Latency NW SAN +Burst Buffers e.?=i= gZUS,
S

atnqu « HPC HW aggressively adopts new technologies such a s
e GPUs, focused on ultimate performance at higher cost,

shared storage to support legacy apps

Various convergence research efforts underway but no realistic converged SW

Stack yet=>» What is the Low Hanging Fruit?



The Graph500 - 201572016 — 4 Consecutive world #1
K Computer #1 Tokyo Tech[EBD CREST] Univ. Kyushu [Fujisawa
Graph CREST], Riken AICS, Fujitsu N

73% total exec 660,000 CPU Core

~ 1500 ® Communi--—  time wait in 1.3 Petabyte mem = PP
= = Computati-}  communication 20GB/s Tofu NW ¢ ., ¥,
~ 1000 /—
=
~ 500 ——
o
)
a T t
c 0
L 64 nodes 65536 nodes
(Scale 30) (Scale 40) N4 pferformance c.f.
Linpack

*Problem size is  LLNL-IBM Sequoia T4jhyLight
IETN NI NEEONETEEE  weak scaling 1.6 million CPUS 10 million CPUs

November 2013 4 5524.12 Top-down ol - Brain-class” graph 1.6 Petabyte mem 1 3 petabyte mem
June 2014 1 17977.05  Efficient hybrid T

November 2014 2 Efficient hybrid

June, Nov 2015 1 38621.4 Hybrid + Node T;‘_

June Nov 2016 Compression




Towards a Distributed Large—Scale Dynamic Graph Data Store (SC16)

Goal: to develop the data store for large—scale
dynamic graph analysis on supercomputers

Comp.
Node

Comp.-
Node

Comp.
Node

Dynamic Graph Application

Large-scale Dynamic Graph Data Store

Dynamic Graph Construction (on—memory)

Node Level Dynamic Graph Data Store

Follows an adjacency-list format and leverages an
open address hashing to construct its tables

vl 2 v3
wl w2 Edge-list
Vertex tati;_____l———————+
Vertex D |
. iEdge weight | )

Extend for multi—-processes using an async
MPI communication framework

Against STINGER (single—node)

STINGER

* A state—of—the—art dynamic graph processing
framework developed at Georgia Tech

Baseline model

. A naive implementation using Boost library (C++) and
the MPI communication framework

E Baseline DegAwareRHH 21 2X
(o}
£ 200 ’
=
o
a 0 — — —
(7)) 6 12 24

Parallels

Multi-node Experiment

o DegAwareRHH '
2 billion

insertions

Inserted Billion Edges/sec

Number of Nodes (24 processes per node)

K. Iwabuchi, S. Sallinen, R. Pearce, B. V. Essen, M. Gokhale, and S. Matsuoka, Towards a distributed large-scale dynamic graph data store. In 2016
IEEE Interna- tional Parallel and Distributed Processing Symposium Workshops (IPDPSW)



Predicting Statistics of Asynchronous SGD Parameters for a Large-Scale
Distributed Deep Learning System on GPU Supercomputers [BigData16]

Background Proposal

e In large-scale Asynchronous Stochastic Gradient Descent ¢ We propose a empirical performance model for an ASGD
(ASGD), mini-batch size and gradient staleness tend to be deep learning system SPRINT which considers probability
large and unpredictable, which increase the error of trained  {istribution of mini-batch size and staleness
DNN

A Mini-batch size Staleness
Objective function E 12 nodes Noweaen—1] ] Noubbaten — 1
Mini-batch size g © Predicted
Staleness=0 e )‘ ﬂlG nodes Measured
S T T ] T | I T | | !
W® , 100 200 300 400 500 600 6 2 4 6 8 10
Twice asynchronous Nsupbatch — 11 7 Neubbatch — 11
updates within z _ | Predicted
gradient computation 8§ 5
W(t+1) i [
100 200 300 400 50
i Staleness=2 NMinibatch Measured Nstaleness
DNN parameters space} (Ng,ppaecn: # Of samples per one GPU iteration)

* Yosuke Oyama, Akihiro Nomura, Ikuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers”, in proceedings of
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)



SWoPP2016 16/08/08

Performance Prediction of Future HW for CNN

O Predicts the best performance with two future architectural extensions

O FP16: precision reduction to double the peak floating point performance
O EDR IB: 4xEDR InfiniBand (100Gbps) upgrade from FDR (56Gbps)

— Not only # of nodes, but also fast interconnect is important for scalability

TSUBAME-KFC/DL ILSVRC2012 dataset deep learning
Prediction of best parameters (average minibatch size 1381+25%)

_ N_Subbatch | EpochTime | Average Minibatch Size
(Current HW) 1779 165.1

FP16 7 22 1462 170.1
EDR IB 12 11 1245 166.6
FP16 + EDR IB 8 15 1128 171.5

25



Fujitsu Deep Learning Processor (DLU™)  rujirsu
. = = FY2[]I8~

DL ™

(Deep Learning Unit)

supercomputer K technologies

DLU™ features

M Architecture designed for Deep Learning

M High performance HBM2 memory

M Low power design

=> Goal: 10x Performance/Watt compared to others

Deep Learning Unit :

.Massively parallel : Apply supercomputer interconnect technology “Exascale” Al
=> Ability to handle large scale neural networks possible in
—>TOFU Network derivative for massive scaling

1H2019

23 All Rights Reserved, Copyright 2017 FUJITSU LIMITED




Cutting Edge Research AI Infrastructures in Japan
Accelerating BD/AI with HPC

(and my effort to design & build them) 1H 2019?
Being “ExaAl”
Manufactured Mar. 2018  X2:077.7  ~1 Al ExaFlop
Aug. 2017 x2.84.2 ABCI (AIST-AIRC) Undergoing
Under TSUBAMES3.0 (Tokyo Tech.)  130-200 AI-PF Engineering
Acceptance 47.2 Al-PF (65.8 Al-PF Study

Mar.2017  %3.8 \y/Tsubame2.5)

AIST Al Cloud
x5.8  (AIST-AIRC)
8.2 Al-PF

N

In Production

IDC under
construction

Oct. 2015
TSUBAME-KFC/DL
(Tokyo Tech.)

1.4 Al-PF(Petaflops)

R&D Investments into world leading
Al/BD HW & SW & Algorithms and their
co-design for cutting edge Infrastructure
absolutely necessary (just as is with
Japan Post-K and US ECP in HPC)

THE NATIONAL
ARTIFICIAL INTELLIGENCE
RESEARCH AND DEVELOPMENT
STRATEGIC PLAN




Co-Design of BD/ML/AI with HPC using BD/ML/AI

- for survival of HPC Acceleration and Scaling of
Accelerating BD/ML/AI Vi? HPC and | Farge Scal{e S;rphs
% Conventional HPC Apps Technologies and Bl
f” ot it Infrastructures :

/Big Data AI-\ Big Data and

. utual and Semi-
Obtimizi Oriented Automated Co- ML/AI Apps Image and Video
ptimizing System E | on of S B
Software and Ops Supercomput cceleration o and = S1m

Methodologies

Acceleration

Future Big Data-AI Scaling, and
Supercomputer Design Control of HPC via 8,
Ao HE. 1 BD/ML/Al and
ABCI: World’s first and future SC designs

largest open 100 Peta Al-
Flops Al Supercomputer,
Fall 2017, for co-design




We are implementing the US AlI&B
...in Japan, at AIRC w/ABCI

e Strategy 5: Develop shared public datasets and

nvironments for Al training an ing. Th
environments for Al training and testing. The THE NATIONAL

depth, quality, and accuracy of training datasets ARTIFICIAL INTELLIGENCE
and resources significantly affect Al performance. RESEARCH AND DEVELOPMENT

Researchers need to develop high quality
datasets and environments and enable

responsible access to high-quality datasets as well National Science and Technology Council
as to testing and training resources.

Networking and Information Technology
Research and Development Subcommittee

e Strategy 6: Measure and evaluate Al technologies
through standards and benchmarks. Essential to
advancements in Al are standards, benchmarks,
testbeds, and community engagement that guide
and evaluate progress in Al. Additional research is
needed to develop a broad spectrum of
evaluative techniques.

October 2016




Many core was a good step but we already used
it once, and cannot use it again for boosting

Need another leap!

___100000 TSUBAME3
(ﬁc Estimate /-
= 10000 Test Server 5550—_‘________‘_____.0— ——— ~2017~2018 Post Moore
@ TSUBAME1.2 i 15750 crossover Flattening
o (S1I070GPU) @
— 1000 i
E TSUBAME1 842
= 100 (optero
@ H#7 5 with same GPU
O
S 10 .
i 10 years x1,210 in
g 1 10 years!
o = AN =1 AN =4 AN == (N =1 (N == (N =1 (N =~ (N =~ (N «—= (N i
o I r r* r r T r * r* X * T r* T T I T T I I I
O O NN 0 OO OO OO d A N N YOO S < in ©
O O 0O 0O 0O 000 d dAdA d A A A A A A A d -
RNRNRRRARRARRIRRARIRIRKRRR
Year

Measured for the 2011 Gordon Bell Award Dendritic Solidification App
Flop/s/W = Total #Flops / J = energy to solution given same problem



What is worse: Moore’s Law will end in the 2020’s

 Much of underlying IT performance growth due to Moore’s law

e “LS|: x2 transistors in 1~1.5 years”
e Causing qualitative “leaps” in IT and societal innovations
* The main reason we have supercomputers and Google...

*But this is slowing down & ending, by mid 2020s...!!!

* End of Lithography shrinks The curse qfconstant
 End of Dennard sca.lmg transistor power shall Gordon Moore
* End of Fab Economics soon b g om 115

*How do we sustain “performance growth’(f ﬁ%yond the “end of

Moore”?

* Not just one-time speed bumps
 Will affect all aspects of IT, including BD/AI/ML/IoT, not just HPC
* End of IT as we know it



20 year Eras towards of End of Moore’s Law

20-year fe 1980s~2004 )
Moore-Reanard :
35 YEARS OF MICROPROCESSOR TREND DATA .-===27 Dennard scaling,
R Single Core f4+ = singl
- ILP-Vector Pert+ = single
3 ©3-95nN ' ’ ’ ’ "3’, ransistors . . = I
10 35qmda;§25 o towanty  Killer-Micro Era thread+ = transistor
10° L C?::ant‘ A >_& freg+ = power+ _<
105 _ ___________ Trans|storpower . ..: '. : . 20 year 2004~2015 featu re
16t L N 4 : " Peomame  Post-Dennard scaling, perf+ =
A f”e':'”” Many-Core Era |  transistor+ = core#t+,
3 N m A W e Wt ® _* o :.. .requ.ency
We T g B constant power
10° N LT - e * 2015~2025 all
0t /T Numberor \_ above gets harder
! [ ~ -
oL 20-year 2025t p;)st Moore,
; j j ; j j j j i 3 constan
1975 1980 1985 1990 1995 2000 2005 2010 2015 Next-Gen

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore

Need to realize the next 20-year era of supercomputing

Post-Moore era

feature&power =
flat performance



The “curse of constant transistor power”
- lgnorance of this is like ignoring global warming -

e Systems people have been telling the algorithm people that
“FLOPS will be free, bandwidth is important, so devise
algorithms under that assumption”

* This will certainly be true until exascale in 2020...

e But when Moore’s Law ends in 2025-2030, constant transistor
power (esp. for logic) = FLOPS will no longer be free!

e So algorithms that simply increase arithmetic intensity will no
longer scale beyond that point

* Like countering global warming — need disruptive change in
computing — in HW-SW-Alg-Apps etc. for the next 20 year era




Performance growth via data-centric computing:
“From FLOPS to BYTES”

 |dentify the new parameter(s) for scaling over time

e Because data-related parameters (e.g. capacity and bandwidth) will still
likely continue to grow towards 2040s

e Can grow transistor#f for compute, but CANNOT use them AT THE SAME
TIME(Dark Silicon) => multiple computing units specialized to type of data

e Continued capacity growth: 3D stacking (esp. direct silicon layering) and
low power NVM (e.g. ReRAM)

e Continued BW growth: Data movement energy will be capped constant by
dense 3D design and advanced optics from silicon photonics technologies

e Almost back to the old “vector” days(?), but no free lunch — latency still
problem, locality still important, need general algorithmic acceleration
thru data capacity and bandwidth, not FLOPS




Many Core Era

Post Moore Era

Flops-Centric Algorithms and Apps

Flops-Centric System Software

Homogeneous General Purpose Nodes

Compu Localized Dat
Node
Compu ute
Nod No
>

Loosely Coupled with Electronic Interconnect

Compute
odes

Transistor Lithography Scaling

(CMOS Logic Circuits, DRAM/SRAM)

Hardware/Software System APIs e ’
I
Flops-Centric Massively Parallel Architecture

Bytes-Centric Algorithms and Apps

Bytes-Centric System Software

Hardware/Software System APIs
Data-Centric Heterogeneous Architecture

Reconfigurable
Massive BW Dataflow Optical
3-D Package DNN& Computing
] Neuromorphic
Non-Volatile Quantum
Memory Low Precision

Error-Prone
OO00O0
Ultra Tightly Coupled w/Aggressive

3-D+Photonic Switching Interconnected

Novel Devices + CMOS (Dark Silicon)

(Nanophotonics, Non-Volatile Devices etc.)




Multi-Phyics

Massive Medical

Simulation Manufacturing Imagin Fusion/Plasma EMF Analysis Post-Moore
£ine Performamce
Auto Tuning Models
I ( Couplers ‘
POSt-|\/|00re IS NOT d Post-Moore Computational P T 12

Science Libraries

BW Reducing Alg. Parallel Space-and-Time

Algorithms

-

Approximation

More-Moore device >

Post-Moore Data Science
and Al Libraries

dS d pPpanacCea

.

Data Assimilation — Out-of-core Alg

)

Machine Learning
based acceleration

High B/F Algorithms

Device & arch. advances
improving data-related

Post-Moore Programming Model

Data-oriented
Scheduling

Uncertainty , | |
Quantification High-Level Accelerator—
Latency Synthesis Specific
— Hiding Compilers Compilers

parameters over time

Post-Moore High Bandwidth Hierarchical Memory

Data-Movement
Runtime

“Rebooting Computing”
in terms of devices,
architectures, software.New memory Devices

: PC-RAM
Algorlthrns, and SR AN
applications necessary STT-MRAM

3D architecture
Next gen VIAs & silicon
fabrication

=> Co-Design even
more important
c.f. Exascale

Memory

Fault
Tolerance

~

Hierarchical Data
Abstractions

Data & Custom Compute Centric Platform Accelerator

“Binaries”
Silicon Photonics WDM Interconnect
Photonic Switching Brain-inspired Computing Post-Moore
Photonic Interposes Quantum Computing Performance
Photonic Compute Devices Low Precision & Neural Networks/ Parameters
Optical Packet Switching PrObab"_StiC Neromorphic/
Computing Izing - Annealing

Low-Reliability computing
Neartiresitoid computing

Low-Reliablility Communication

Building Block “gluable” architecture
Inductive TCI

Tnugsten VIAs and 3D silicon

Data Memoization
Customizable logic

Communication Computation



Problem Specific Architectures
to exploit dark silicone

* Deep Neural Network Accelerator (Many, incl. Google)

e Spiking Neuromorphic Architecture (Manchester SpiNNaker,

IBM TrueNort
* Ising Model o

n, Heidelberg BrainScaleS)

otimization architecture (Hitachi)

e Automata Processor (Micron)
e Advanced FPGAs (Alltera, Xilinx)
 Network & I/O accelerator (Mellanox)

* And of course Quantum Annealing and Computing (D-Wave)



Non-Volatile Memory and 3-D Stacking

 Many devices
 Various stacking technologies

e Results: Massive capacity, extreme bandwidth, low power
e Exploits Z-direction locality
* New breed of “in memory computing”

e Could persist as a trajectory for the next 20 years



b covrurer  \When does data movement dominate?

LABORATORY .« . .
2.7mm Core Energy/Area est. Data Movement Cost
e == - " Compute Op ==
_/j i L IS Area: 12.75 mm2 data movement Energy @
i Ul
intel/| e I Power: 2.5W 108mm
g’ 3 Clock: 2.4 GHz Energy Ratio for 20mm
t] E/op: 651 pj 0.2x
>Compute Op == <
Area: 0.6 mm?2 data movement Energy @ Could be reduced by
) o.lsmm - CP:?O"‘C’E“ (1"3;\’(\5’:;0'2\"’) 12mm orders of magnitude
v 4 N - . ; . .
RISC‘ Bl Eop: 150 (75) o Energy RO’;’O g(r 20mm by 3D, as Z-direction
: movement is under
Compute Op == i1mm
Area: 0.046 mm? data movement Energy @
Power: 0.025W 3.6mm
0.23mr o . .
) ,; El/ock. ;.20 GHz Energy Ratio for 20mm Capacity by dense
op:
E P 3 5.5x NVM w/DRAM cache
IE_.Ic_::s.-'-"_"'"Ef:;;;..:._ U.S. DEPARTMENT OF Office of

"\l.’h
rrtrrrr]l 39

BERKELEY LAB
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Example Innovation: Tungsten TSV at 2um ultra fine
pitch with die thinning by Tezzaron Semiconductor

{11 o Storage
hx nm node
o Suppose 4TF SFP @ 7nm, 16TB/S / — Lontroller
internal chip BW vs. 200GB/s external A
chip mem BW => 80 times speedup! = e Iagnnlriv:;de

4.2 mm
 High-density, high-signaling TSV challenge

— Wide |/O 2 1024 bits 1 Ghz -> 2~3 Ghz =ished thickness:

— We need 128,000 bits @ 1Ghz ! 0.3mm

— 10 micron TSV estimation Many-layer stacking -

e 400 x 400 TSVs on 20mx20m chip -> 50 via aggresswe wafer m’
micron spacing

. . . thinning and self- m—’
* With tungsten TSVs the chip area is | _

negligible diagnostics

Source: Tezzaron website
http://www.tezzaron.com



Accelerating “Big Data” Non-Volatile Memory-based
Exascale Architectures

TR FRtEPIY pe— * Accelerating
N o — HPC Apps, Big Data-HPC Apps
e Using
— Exascale machines w/NVM (Flash, ReRAM, 3D
Xpoint, ...)
— BYTES, not FLOPS
QBOX Performance Strong Scalng (0708 * While

_ problem) - Perf per Node

. — Reducing Bandwidth, Exploiting Locality
: — Dealing with higher write cost
— Dealing with low durability
— Maintaining Programmability
— Exploiting other system assets such as

s b T hybrid electro-optical Exabit interconnect
From Al Gara Keynote, IEEE Custer 2015

Perf per Node

0 12800 25600 38400 50 e{g() 64000 76800 89600




Presentation-EPS-100814-dist-.pptx)

e 64 Gb of Memory in 175 mm?

o 256 fully independent RAMSs

e 16 Banks per RAM

e 64 bit Sep 1/O Data per RAM

e /ns Access Time (Closed page to data)

e 12ns tRC (Page Open to Page Open in a Bank)
e 16 Tbh/s Data Bandwidth

SENAC IS TUIR




Mem contraler layer in bottom

Capillar
underfill
]

20Mem TSV rad <tum

Tezzaron
Collaboration

IME A*STAR / Tezzaron Collaboration

uBumps Die to Wafer Cu Thermal Diffusion Bond

====== C4 Bumps

2 Layer Processor

level#4

I—, level#3

nlevel#1

@/ lezaron Tezzaron Semiconductor L0/08/2014 43
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Super Building Block Archiecture (Amano, Keio U)

Holistic Control of Component Power System View on “Post-
Moore” Architecture

\ Not just a new device, but

focus on how they are
Interconnected, and

Integrated as a system
controlling their power

System SW and

Programming A Hub architecture that

S Standard  |€mploys Inductive (3D) TCI
and programmable
FPGA+Switch

Circuit Switc
Optical NW




Hub Base Chip = Inductive TCl + Reconfigurable Swtich + FPGA

TCIlArra

00000000 00000000

FPGA FPGA
FPGA

A new reconfig device
based on TCl arrays and
reconfigurable switches

OO0O0O000O0O0
OO0O0O000O0O0

FPGA
FPGA FPGA

© 00000000 00000000

OO000000 00000000

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O




A A A A

\AA A A

OO0O0O0O0000 OOC

A
) 1 =Y

L __J___)

FPGA
FPGA

Recon
f.
SW

%ﬁLL\:yt":L— FPGA
T4 FIT

Recon
f.
SW

%4>q*?v

7

vYyyYy

F—2—FVTHERED A A—D
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------------------------------------------------

. MIPSCPU |
' Core

_Network IF

Fasssssnsnssnsinsnnnnnunnanunnunnunnnnn’t nnnnwn’ FrERRR R R AR

RN EEEEEEEEEEEEEN, BESSESEEEEEEEE, EESEEENS SEsssssssssssssasar

Accelerator 2
200 sadannaaionntsssesissisanyaaitnnrivssensssnaesl

Accelerator 3
G e T TV LT RS

Host CPU + Accelerator x3 Chip Stack
Fabricated in 65nm CMOS

8x8 PE Array

u-Controller
NEW Il

_____
AR N RS NEE SRS ASEESESsEEEEEEEssEEsssEssEsssssssssssssnsses’ sessssssawsnes” Fassnens Tamsussssssessssnssl

Accelerator Ch|p
Microphotograph of stacked test chips.



Strawman BYTES-Oriented Post-Moore

Architecture

Low voltage & power CPU for 16TB/s DRAM &
direct stacking and large | NVM/Flash | NVM Bandwidth | NVM/Flash |
silicon area | NVN1/Flash | > 5~10Tbps NW idea | NVM/Flash |

| NVM/Flash | | NVM/Rlash |
Domain-specific hetero- and | S | | DRAM |
customizable processor | DRAM | // | DRAM |
configurations, including PIM | STV | | ST !

Low| Power |CRU Optical SW &’Launch Pad Low|Power CPU

Extreme multi-layer DRAM & DZOZOZ0Z0202 02022220 OIOIONNOIOIOROBROI010X( PO 02020202 0202020202¢
NVRAM stacking via high A B TSV [nterposer o

density tungsten TSV 00000

Direct WDM optics onto Direct Chip-Chip Interconnect with DWDM optics
Interposer Low Power Processor allows Direct 3D Stacking
Configurable Low-power CPU




Making Silicon Photonics a reality (slide courtesy of Nick Dube @ HPE)

—Today’s optical technology: cMOS c T
— 400$ / 100Gbps optical cable @ ~4 watts ‘ o S,
— Or 4% per Gbps or 40 pJ / bit per second
— At Exascale: >10MW and >500M$ (this is problematic)

Optical
Power supply

1.7mm %

—The Silicon Photonics promise: RN BNO T
— 10 cents per Ghps, projected 3-6 pJ/bit

Tx module Rx module .
e B L e S T R R e e i R R s e e e e e v g
| Bias CMOs : ; CMOS : 8 -10
' Tuning Driver ! ! Receiver ! i %-12-
] Tl i ! E e
| Thermal PD ; E-ﬂ-- 450 nm
! Tuning : m 2 —
Ty Heater " Optical : .18 20 -I | E L0 nm
: £ i fiber ! - 5 EES j
the; i : ! f-=>lf‘~ GDed )
i W id i i 12065 7 W5 8
i i . . ~ Optical coupler : w.r:mngh |nm: :
e S e e (a) it}

Hewlett Packard HYbrid Integrated DWDM Silicon Photonic Transceiver with Self-Adaptive CMOS Circuits

Enterprise Chen, Li, Bai, Shafik, Fiorentino, Peng, Chiang, Palermo, Beausoleil 49



_ @4 AIST | IMPULSE
Optical Network Technology for Future Supercomputers & IDC

@ Large-scale silicon photonics based cluster switches

@D\WDM, multi-level modulation, highly integrated “elastic” optical interconnects SC14 AIST Booth #2531

@Ultra-low energy consumption network by making use of optical switches

DWDM, multi-level Datacenter server racks Silicon photonics

modulation optical cluster switches
interconnects

» Ultra-compact switches based on silicon
photonics

» 3D integration by amorphous silicon

> A new server architecture

Memory
cube

j

2

......... ) Rl [N y | Current electrical switches:

S,

..... ~ 1pbps
l
2.5D-CPU Card
~500Pbps
Wavelengh  single-source
Bank Wavelengths supply 1 1 20 Gbps
DEMUX MOD. MUX 4 8 640 Gbps
e —— ---{E:::::::::::::l--- Fiber
_:_ 32 8 5.12 Tbps

Current state—of—the—art Tx

100Gbps
l
Silicon Photonics Integration ~ 512Tbps

http:/www.aist.go.jp _

L =}
ADVANCED INDUSTRIAL SCIENCE
AND TECHNOLOGY (AIST)
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8.¢ Optical Coupler Optical Coupler

N
= ==
o z|le
E. )

P o= e —

f . = “
nm =

o 2.5pJ/bit power

» Bare metal protocol
— Ultra low latency
— Protocol agnostic

e 8 core Fiber i S e
e 25Gb SERDES or 3.125Gh mterface
Self-calibrating self-tuning  res7aron slide

ey R T .
X, 1]
-?rwmli
om 1o CEEW S
FIIT TN T TR S

@/ lezaron Tezzaron Semiconductor L0/08/2014 51
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32 x 32 Optical Circuit Switch (Courtesy NTTAIST)

After FC bonding

Ceramic LGA interposer with i
0.5-mm pitch \ —
Flip-chip bonding with Au e UM

bumps and non-conductive Problem:

paste

LGA socket to contact PCB hea.'vy
optical loss

L GA socket

Ceramic interposer

Si-SW chip 0.5mm aI“LEApadE,
\H_'

0.3mm (min.)




Ll Fast Optical Crossbar Swtch (EECS, UCB)

Seok eft. al. "Large-scale broadband digital silicon photonic
switches with vertical adiabatic couplers” Optica, 3-1, 2016

« Array of 64x64 MEMS
optical crossbar switch

 3.7db on-chip insertion loss

* 0.91microsecond switching
Time

« At 100,000 ports - 9 hop
> > network
b < « 33db+ loss

« 8.2 microsecond
> - switching time => 1Tb
> ate -
Fig. 1. Schemaitics of silicon photonic MEMS switches. (a) Matrix architecture of silicon photonic MEMS switch, (b) close-up view of a MEMS- 8 OO Kby.re B W x D e I ay
: i i ioned at

actuated adiabatic coupler, (c) switch unit cell in the OFF state, and (d) switch unit cell in the ON state. The adiabatic coupler is precisely posit d
the optimum distance to the bus waveguide.

MEMS-Actuated
Adiabatic Coupler




|| . .
Solution: Hybrid EO Network

* Ideal: use low (latency/diameter, bandwidth,
power) electrical network for low latency messages,
and use optical circuits for high bandwidth and
fixed topology messages

* Idea2: merge the electronic switch and optical
MEMS switch, and use the latter as the control
plane of the optical MEMs circuit

- Thus the electronic switches become the optical
speculative "buffer”



Hybrid Electro-Optical Network w/shortcuts
Takizawa&Matsuoka LSPPO7/]

“Locality Aware MPI Communication on a Commodity Opto-Electronic Hybrid Network”

Low latency

Fully-connected
Electronic Packet
Switch Network

small packet

Optical Circuit
Switch Network

=

Bulk

Transfer

Electronic Packet
Switch Network

-_— gm

’ -‘ " ' \
AN A N
o) W) 43 \m

Optical Circuit Switch Network

EO-OE Shortcut Forwarding of Messages Across Switches
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NC//CT}IICT Optical Packet Switch Node (Slides courtesy NICT)

Burst Oplical Transmission Unit2__

® 4 x4 OPS node with optical packet (OP) transponder
M 100Gb/s OPS port, 10GbE x 10 Client ports
( M Stability: Tolerance for environmental disturbance
100Gbps (Polarization, Power fluctuation)
Optical Packet < .
Hransponder m Total throughput : 800 Gb/s
M Total power consumption: 141 W (w/o Transponder)
; . M 10-node hopping, 450 km fiber transmission
urst-mode
Optical <
Amplifiers
- Header| _____
J Proc : 100 Gb/s Multi-wavelength
P':;fgsegor |y ¥ ] ntical Packet Format
‘ > > 2| 4x4 12
4xX4EA > 3 I 3
Switch (1U) = | olier 4]
‘ 100G OP 100G-OP
Transponder  [*
Switching speed: < 8 ns 10GbE x10 A9  freamid

- A0 G
Power consumption: 3 W <Client Network (10Gb Ethernef] —> \ 10 x 10 Glfs payload J

Y. Muranaka, et.al, Photonics in Switching 2015. H. Furukawa, et.al, no.P.4.16, ECOC2015.

HIDEAKI FURUKAWA  furukawa@nict.go.jp
September 6: 2016 © 2016 National Institute of Information and Communications Technology



Applications & Algorithms

Slides by Kengo Nakajima

Information Technology Center
The University of Tokyo

New Frontiers of Computer & Computational Science

towards Post Moore Era
December 22, 2015, Takeda Auditorium, The University of Tokyo



Assumptions & Expectations
towards Post-Moore Era

Higher Bandwidth, Larger & Heterogeneous Latency

— Memory: 3D Stacked Memory
— Network: Optical Communication
— Both of Memory & Network will be more hierarchical

Larger Size of Memory & Cache
Transaction/Transactional Memory

Application-Customized Hardware, FPGA

Large Number of Nodes/Number of Cores per Node
— under certain constraints (e.g. power, space ...)
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Applications & Algorithms in Post-
Moore Era (1/2)

 Compute Intensity = Data Movement Intensity
— Non-Blocking Method, Out-of-Core Algorithm

 Implicit scheme strikes back !
— We believe it was never defeated
— Improvement of performance on sparse matrix computations

— Big change and advancement are expected in all research
areas related to algorithms for sparse matrices including
preconditioning

— Everything might be easier... but don’t relax too much!

— Other Compute to Data Algorithms: H-Matrices
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Applications & Algorithms In
Post-Moore Era (2/2)

Compute Intensity -> Data Movement Intensity
— Integration of CSE and Data Analysis/Machine Learning
— Data Drive Approach: Machine Learning
Hierarchical Methods for Hiding Latency

— Hierarchical Coarse Grid Aggregation (hCGA) in MG
— Parallel in Space/Time (PiST)

H-Matrix Solver

— Dense-H-Matrix-Sparse: O(n”*3) => O(n™2) log n
Comm./Synch. Avoiding/Reducing Algorithms

— Pipelined/Asynchronous CG: MPI_lallreduce in MPI-3
— Dynamic Loop Scheduling

Power-aware Methods

— Approximate Computing, Power Management, FPGA

60



Highly-Scalable Atmospheric Simulation Framework
(ACM Gordon Bell Prize 2016)

AFPES T1279L96
Precipitation [mm  hour] 03 SEP/17 122

.

Slide courtesy Haohuan Fu

EREHE B EDI

National Supercomputing Center in Wuxd




Weak-scaling results

Resolution (km) DOFs=772B
2.480 1.389 0.920 0.620 0.488
0.16 , | , 89)
- ® | *— o— ® [ |
0084 ® . T Lt re—e— —9—. J
1 | | | | 7.95 DP-PF
] I I I I
0.04 1 34X S o o T +  FExa-scale”
0.02 - TTyTTTTTTTT T iaiaiaiaiaieiieiee R EE - - i--- for exp
- ] I I I I
(o ' | | | | '
& 0.01—-——-| ——————— 3 e e F———————-—-—-= T T e - —
v 1 < | | l - [89.5X]:
0.005 4 - -l SO 4.
0.0025 4 --———————-+-—-= e e 4: _
0.00125 4 —®— '.f[‘EUC_it_i ________________________________________ o
— & Explicit 23.66 DP-PF
i
0.33 M 0.67 M 1.33 M 2.66 M 5.32 M 10.64 M

Slide courtesy Haohuan Fu

TI'\+"\I Lo W | lmL\ﬂr I'\'F Falal aYel

EREEHEFTED The 488-m res run: 0.07 SYPD, 10.6M cores, dt=240s, 89.5X speedup over explicit

Mational Supercomputing Center in Wd




Memory BW Rich Matrix Algorithms: lwashita (Hokkaido-U), Ida (U-Tokyo)

 H-Matrix: Low Rank Approximation of Dense Matrix with
a Hierarchy of Sparse(+Dense on diagonals) Matrics
H-Matrix ;
Based

Methods - Full-Rank (dense)

H-Matrix
Conversion

from
FLOPS-cetric
to

BYTES (BW) Dense Matrix Convert without sacrificing numerical precision
-centric

Low-Rank (sparse)

N Earthquake Cycle Simulation (JAMSTEC, AICS)
ppOpen-HPC [Nakajima et. al., U-Tokyo0]
First distributed memory implementation

Superconducting Coils
(Kyoto-U)

of H-Matrix HACApk

Workd with U-Tennessee
Research Issue:

How to optimize the algorithm to Post-Moore, Bandwidth Rich Architecture
How to apply this to DNN
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Co-Designing Post-Moore HPC System
Architecture

Programming Models and Abstraction?

\_---_

Next Gen Exabit-class  Specialized/Integrated/Re ~ Advanced 3-D stacked
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Post Moore Era Supercomputing Workshop @ SC16
e https://sites.google.com/site/2016pmes/

Jeff Vetter (ORNL), Satoshi Matsuoka (Tokyo Tech) et. al.

it Search this sit

Wt ] 2016 Post-Moore's Era Supercomputing (PMES) Workshop Home

'orkshop Home

Mews

Call For Position

Papers - Submission i : ) .

Deadline - June 17 Co-located with SC16 in Salt Lake City
Monday, 14 November 2016

News

PMES Submission Site Now Openl

nvited Speakers PMES Workshop Confirmed for SC 161

Photos o .

Program Workshop URL: http/j.mp/pmes2016 Submissions open for PMES Position Papers
. April 17

Resources CFP URL: http-/. mp/pmes2016cip SRt

Submission URL (EasyChair): hitp 4] mp/pmes2016submissions
Submission questions: pmesi6@easychair.org

Workshop Venue Important Dates

Sitemap

= Submission Site Opens: 17 April
2016

e T A T L e T T = T =

This interdisciplinary workshop is organized to explore the scientific issues,
1 8 8 challenges, and opportunities for supercomputing beyond the scaling limits of


https://sites.google.com/site/2016pmes/

Backup Slides



Neuromorphic Architectures
(Not to be confused with DNN Accelerators)

Spim\__ldker Distributed Neuronal Computation “on chip”

Asynchronous Spiking Neural Computation Hardware
for low-power real-time operation in Closed-Loop Systems

... to simulate 1 Billion T”TI
S_plklng Neurons 18 Core Stand-Alone Prototype
in real-time

. - 882 Core “Rack Version” U '
o xr

M“WCH&%E{{

+ Multi-channel spiking input and output

» Stand-alone spiking computing system

» Simulates ~20.000 neurons in real time

+ Small (~20x20mm); low power (~600mW)

» Flexibly configurable, extendable, stackable

IBM TrueNorth

Manchester SpiNNaker
(ARM Based)



Computing with Ising model CMOS Ising computing

® |sing model: expressing behavior of magnetic spins  ® Mimicking Ising model with CMOS circuits
® Using Ising model as natural phenomenon to map ® Easy to manufacture, easy to use, good scalability
problems

Ising model CMOS circuits

Hitachi@I1SSCC2015

“An 1800-Times-Higher g
Power-Efficient 20k-spin _ e oS i
. . 4 = mimicking
Ising Chip for §=-T 00, -Tie 2 _— sing model | py”
Comblnatlona/ H: Energy of system SPIRSRIE Zipeng Ising model | | CMOS
Optimization Problem [03: Spin status (+1/-1) n: number of spins Spin status o;, +1/-1 Momory ""/"0"
J;;: Interaction coefficient intsraction.z Interaction coefficient: memory
Wlth CMOS Annea/ing” i Updating spin: digital circuits
Competitive to Fabrlcatlon results Measurement results of energy
Quantum Annealing, ® 1,800 times higher energy efficiency than
ltems Value conventional approximation algorithm on CPU
room tem peratu rel Number of spins | 20k (80 x 256) pp g
1k- b= Process 65 nm » £ 10000 |
ed Sy tO SCa I e 73055I;3;uun?2rray Chip area 4x3=12 mm? ;§ o
T T Areaof spin | 11.27 x 23.94 =270 pm? 5% 1000 '
Could be applicable e £2 100
25 Number of \ntorsction factor: 2 it 5240 bt = E x 1800
. = SRAM cells nteraction factor: 2 bit x £ its S 'x 10 |
to d e e p I e a rnin g ? 3 External magnetic coefficient: 2=
2 bits _ 1 .
Memory IF 100 MHz 8 64 512 4096 32768
Interaction speed | 100 MHz e Number of spins (problem size)
: onditions:
nge ;Z‘:g%i::lr:if:t Write: 2.0 mA Randomly generated problems, energy for same preciseness solution
(11V) Read: 6.0 mA Ising chip: VDD=1.1V, 100-MHz interaction, best solution among 10-times trial is selected.
Dot i-nclude 10 Interaction: 44.6 mA Approximation algorithm: SG3(*) is operated on Core i5, 1.87 GHz, 10 Wicore.

{'}Seﬂkanmman etal, "On Mmmmmfwmmcmm
Juurnlnn ing, Volume 3, Number 32007, pp. 211-218, 2007,

B Ay R0 Tt Forme- B S0y Jaing C
. PP Sohagan tang o

b Mo &2 IEEE s Piettigiesr
o Scbd-Sus Circuts Confersnce e * el A
Imiareciions Sold- sl Cirits Conlaracy o Comiinadan Opditaan Prabdaes i S Aneatog




Towards Understanding the Performance of
FPGASs using OpenCL Benchmarks
[HIPEAC Reconfigurable Computing WS 2015
Extended version to appear SC16]

Hamid Zohouri (Tokyo Tech), Naoya

Maruyama (Riken AICS), Satoshi
Matsuoka (Tokyo Tech), Motohiko Matsuda

(RIKEN AICS)

In collaboration with:
TSUBAME Aaron Smith (Microsoft Research), Microsoft’

Tokyo Institute of Technology
Supported by Altera Resea rC h

1% AIcs ATERA,




I Parallelism in Altera OpenCL

Explicit:

Thread/SIMD

parallelism

Implicit:
Pipeline
parallelism

Inter pipelines

e Configurable number of
duplicated pipelines

Intra pipeline

SIMD

 |Instantiate SIMD units base
on user direction (attribute
num_simd_work_1tems)



I Optimization Effects

Power

Type Optilg;;lzat (;nﬁ;) Ru(ansl;ne Di?\slvﬁg on U::gv;e{J)
MT None 277.2 ( /16574 \) 12.01 199.1
Pipeline None 243.4 ‘ 117523 i 10.59 1245.2
MT Basic 194.7 2445 16.94 41.4
Pipeline Basic 249.1 11624_1157 9.93 1156.7
Pipeline - 148.0 ('/ 251] 15.44 3.8

Sliding window is 66x faster than baseline

g

~
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Stratix V Speed-up vs. Baseline

« Up to 133x speed-up
* CFD speed-up is minimal due to lack of area for optimization

FPGA Speed-up vs. Baseline

160 -
140 -
120 -
100 -
80 -
60 -

40 ~

I I =
; —

NW Hotspot Pathfinder SRAD LUD CFD




Stratix V vs. E5-2670 & K20c

Speed-up Compared to CPU

> Perfor is not good

1 121

- Strati 061
> Beats CPU performi#fte in alPBgrehmarks®xeept Hotspdt CFD

. . mE5-2670 m K20c = Stratix V
+ Beats CPU power efficiency;in al penchimarks, "c.

o Cdnnot beat GPU performance in any benchmark
- Beaats GPU power efficiency in all benchmarks up to 3.4x

5.25
4.1 4.03 4.31 3,51

0.29

NwW Hotspot Pathfinder SRAD LUD CFD
m E5-2670 m K20c = Stratix V
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Parallel-in-Space/Time (PIST)

MG Is scalable, but improvement of performance is
limited by parallelization only in space direction

Time-Dependent Problems: Concurrency in Time Dir.
Multigrid in (Space+Time) Direction
v’ Traditional time-dependent method: Point-Wise Gauss Seidel

v XBraid: Lawrence Livermore National Laboratory
OApplication to nonlinear problems (Transient Navier-Stokes EqQn’s)

MS with 3 sessions in SIAM PP16 (April 2016)

PIST approach is suitable for the Post-Moore Systems
with a complex and deeply hierarchical network

that CaU SeS Initial Space-Time Guess m—) @ — Converge
4 A4 iy iy N ~N

large latency. [ / -
'é’ mfﬁ} f
Space ™ ? Space ™

= 2
E
g 7 g

—
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Specification of OPS

NICT Optical Packet Switch

Experiment and Estimation

Node (Possibility)
1/0 ports 4x4 2x2
Max data rate/port 100 Gb/s (10A x 10G, OOK) 12.8 Tb/s (64A x 25G, DP-
16QAM, Offline)
Total throughput 800 Gb/s 51.2 Th/s

Header processing
method

OOK header with 16 bit OP
Address, 1024 Address (= Entry
of Look-up Table)

Header processing
speed per port

250 ns (O/E -> FPGA (Route
Selection) -> SW)

Optical switch

4 x 4 EA switch

1 x 8 PLZT switch

Optical buffer size
(Maximum delay)

31 packets (3100 ns)

Power consumption

141 W
(w/o OP transponder)

2278 W (Estimation)
(w/o OP transponder)

September 6,2016

cf) S. Shinada, no. We.3.5.4 ECOC2014.

cf) H. Furukawa, et.al., IEICE Technical report, no.PN2015-20, pp.55-61, 2015.

HIDEAKI FURUKAWA  furukawa@nict.go.jp
© 2016 National Institute of Information and Communications Technology
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Performance of Optical FDL Buffer

76

M Experiment: 64, 500, 1500 Byte 100Gbps
Optical Packets, 8 FDLs

B Total packet loss rate at 4 input ports was
1.2E-5 in about 35 % load condition.

Input port 1

Input portliLS/

div

] O o 01 O E

rrir et

1us/
Input port 3

div

LT T

e r e

1us/
Input port )fl

o N I 9

rrrrirrr+4 1

Optical Packet 1MS

dboupler

splitter/ \

SW-CONT

Output port 1

rrrrrr
rrrrrr

il L nQuTH3

rrrrr

H. Furukawa, et.al., W2A.19, OFC2014.

September 6,2016

1us/div

Optical Switch
and Buffer
with 8 FDLs

B Simulation: 64 Byte ~ 1500 Byte
100Gbps Optical Packets, 4 ~ 64 FDLs

B More than 75% performance at 8-FDL
Opt. buffer compared with Ele. buffer

Avg. Goodput [Mbps]

B=064
JIrB=32
B=16
B=8
B=4

0

Ether o e -

=

Bty S

".‘."" e .I' =Ly

b 4

“H !
=%

G T
laar’
1 Optical
; | | Buffer

! . H

' . ) :
fmesssesnnaraensshirnsnsisasnssinnmssnetssnnsnaise s sssRnsssnnaduenanansRinanas

'

H

".'.".';'_'_"_:'" Electrical

| Buffer

0.0e+00  2.0e+04

4.0e+04  6.0e+04
Arrival Rate [Flows/s]

8.0e+04

1.0e+05

T. Hirayama, et.al, JOCN, vol.7, no.8, pp.776-784, 2015.

HIDEAKI FURUKAWA  furukawa@nict.go.jp
© 2016 National Institute of Information and Communications Technology




GeoFEM Benchmark: ICCG for FEM
Performance of a Node: Flat MPI

SR11K/J2

Power5+
Core #/Node

Peak Performance
(GFLOPS)

STREAM Triad (GB/s)
B/F

GeoFEM (GFLOPS)
% to Peak

LLC/core (MB)

Sparse Solver:Memory-Bound
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Improvement of performance on
sparse matrix computations due to
higher memory bandwidth

D X X X F

l 8 5 X D X X X X F,
@—W—a—aw "7, " AR
e ] s | e @

X X X X D X X X X F

® (&) @ ®] x x x xb X X X X F,
1 2 3 {Y}= [A]{X} _JF

FQ

/2\ /3\ /4 do i: 'l’ N F,
O Y(i)= D (i) (i) | -
Sparse Matrices: do k= INDEX(i-1)+1, INDEX(i) F
gty Y(i)= Y(i) + AMAT (k) *X (ITEM (k) -
* Indirect Memory enddo Fi
enddo -

AcCcess I

X X X D Fe

« Memory-Bound



Assumptions & Expectations
towards Post-K/Post-Moore Era

 Post-Moore (-20257 -20297)
— Larger Size of Memory & Cache

— Higher Bandwidth, Larger & Heterogeneous Latency
« 3D Stacked Memory, Optical Network
 Both of Memory & Network will be more hierarchical

— Application-Customized Hardware, FPGA
e Common Issues

— Hierarchy, Latency (Memory, Network etc.)

— Large Number of Nodes/Number of Cores per Node
e under certain constraints (e.g. power, space ...)
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tirme [seconds]

Comparison between PIST and
“Time Stepping” for Transient

Poisson Equations
Effective if processor# is VERY large

o8f . &
64 1 3zt
32t 1 7
16} 18
of £
4_-ﬂ-time stepping 3 ] _
—cvele —#=time stepping
E-iﬁ-c:n:e: EII:EF ‘\\.- 4=0=V-cycle, FCF
F-oycle, F e e raaer
1 4 16 64 128 256 512 1024 2048 4096 27 3 G4 128 256 512 1024 2048 4096
# processors # processors
2D:129% x 16385 3D:333 x 4097
16 Processors N Space 8 Processors N Space
direction for PIST direction for PIST

R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan,
and J. B. Schroder. Parallel time integration with multigrid. SIAM
Journal on Scientific Computing, 36(6), C635-C661. 2014



Applications & Algorithms
In Post-Moore Era

« Communication/Synchronization
Avoiding/Reducing Algorithms

— Network latency is already a big bottleneck for parallel
sparse linear solvers (SpMV, Dot Products)

81



82

3D FEM Alg.1 Original PCG

Alg.2 Chronopoulos/Gear

Solid Mechanics Alg:3 Pipelined CG
96x80x64 nodes Alg.4 Gropp’s CG

P. Ghysels et al., Hiding global synchronization

Stron g Scalin g latency in the preconditioned Conjugate
Gradient algorithm, Parallel Computing 40, 2014

Speed-Up (20-1,280 cores) Relative Performance to

Alg.1 (Original)

1500 160
i O Alg.1 ® Alg.2 . i
1250 Fk A Alg.3 A Alg.4 S
1000 | G ' A %
2 : / S |
i [ A = ' A A
© 750 | A © ( o 120
o [ é/ o [ n L
) - >
500 | / = g A
[ o 100 g!
250 | o
:‘./( ®Alg.2 AAg3 AAlg4
O ------------------------------ 80 -------------------------------

0 160 320 480 640 800 960 1120 1280 0O 160 320 480 640 800 960 1120 1280
CORE# CORE#



.:/F.\D\?EHH:.: Alg.4: Gropp’s Asynch. CG
Dot products — Preconditioning/SpMV

Algorithm 7. Gropp’s asynchronous CG

1:rp 1= b — Axg; g := M 'rg: Pg == Up; 5g = APg: 7 = (Fp. Ug)
2:fori=20,...
o = (P, §i)
q =M 's;
XLy = '_'.'I-..-'I[i
Xiv1 = Xj + %D,
iy o= T — 08,
Ui 1 = Uy — %,
Vigr = (Tip1, Ui )
10: Wi = -'qi-!j.[
11: By =¥/
12: P = U + i P
130 s = Wi + S
14: end for

i i il
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