
Distributed Machine Learning  
Current Bottlenecks in Algorithms and Software Frameworks  
on HPC and Cloud Architectures

SOS 21 Workshop - Convergence with Data Science: a New Beginning for HPC

Martin Jaggi
EPFL Machine Learning and Optimization Laboratory
mlo.epfl.ch

http://mlo.epfl.ch

Optimization

Systems
Machine
Learning

Machine Learning Methods to
Analyze Large-Scale Data

Applications

What is Machine Learning?

learn from data

software that can

image source

https://www.flickr.com/photos/geekshots/2232636589

Classification

Training data

xi 2 Rd

x

w

(Cortes & Vapnik 1995)
Support-Vector-MachinePerceptron

(Rosenblatt 1957)

The Learning Algorithm

w := w + � · x

(Stochastic 
 Gradient  
 Descent)

iteration cost: O(d)

xi 2 Rd

Machine Learning Systems

machine

⚙

Machine Learning Systems

What if the data does not fit onto one computer anymore?

machine 1

⚙

machine 2

⚙

machine 3

⚙

machine 4

⚙

machine 5

⚙

Foto: Florian Hirzinger

machine 1

⚙

Machine Learning Systems

machine 2

⚙

machine 3

⚙

GPU 1a

⚙⚙⚙⚙

GPU 1b

⚙⚙⚙⚙

GPU 2a

⚙⚙⚙⚙

GPU 2b

⚙⚙⚙⚙

GPU 1a

⚙⚙⚙⚙

GPU 1b

⚙⚙⚙⚙

v 2 R100

The Cost of Communication

✤ Reading from memory (RAM)

100 ns

v

✤ Typical Map-Reduce iteration

10’000’000’000 ns

✤ Sending to another machine

500’000 ns

v

Challenge

The Cost of Communication
Challenge

Spark vs. MPI

C) pySpark. This implementation is equivalent to that of
(A) except it is written entirely in Python/pySPARK. The
local solver makes use of the NumPy package (Walt et al.,
2011) for fast linear algebra.

D) pySpark+C. We replace the local solver of imple-
mentation (C) with a function call to a compiled and op-
timized C++ module, using the Python-C API. Unlike im-
plementation (B) we did not flatten the RDD data structure
since this was found to lead to worse performance in this
case. Instead, the local solver is executed using a mapPar-
titions operation. Within the mapPartitions operation we
iterate over the RDD in order to extract from each record a
list of NumPy arrays. Each entry in the list contains the
local data corresponding to a given feature. The list of
NumPy arrays is then passed into the C++ module. The
Python-C API allows NumPy arrays to expose a pointer to
their raw data and thus the need to copy data into any addi-
tional C++ data structures is eliminated.

E) MPI. The MPI implementation is entirely written
in C++. To initially partition the data we have de-
veloped a custom load-balancing algorithm to distribute
the computational load evenly across workers, such thatP

i2Pk
#nonzeros(c

i

) is roughly equal for each partition.
Such a partitioning ensures that each worker performs
roughly an equal amount of work and was found to per-
form comparable to the SPARK partitioning.

Note that the C++ code that implements the local solver in
implementations (B), (D) and (E) is identical up to specific
JNI/Python-C API functions.

4.2. Infrastructure

For the experiments discussed in the next section we ran
our algorithm implementations on a cluster of 4 physi-
cal nodes interconnected in a LAN topology through a
10Gbit-per-port switched inter-connection. Each node is
equipped with 64GB DDR4 memory, an 8-core Intel Xeon⇤

E5 x86 64 2.4Ghz CPU and solid-state disks using PCIe
NVMe 3.0 x4 I/O technology. The software configuration
of the cluster is based on Linux⇤ kernel v3.19, MPI v3.2,
and Apache Spark v1.5. Spark is configured not to use the
HDFS filesystem; instead SMB sharing directly over ext4
filesystem I/O is employed. While this decision may occa-
sionally give reduced performance in Spark, on one hand it
eliminates I/O measurement delay-variation artifacts due to
the extensive buffering/delay-writing of streams in HDFS,
and on the other hand it enables more fair comparison
with MPI since all overheads measured are strictly related
to Spark. Finally, all cluster nodes are configured with-
out a graphical environment or any other related services
that could possibly compete with Spark or MPI over CPU,
memory, network, or disk resources.

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

time [s]

su
b

o
p

tim
a

lit
y

(A) Spark
(B) Spark+C
(C) pySpark
(D) pySpark+C
(E) MPI

Figure 2. Suboptimality over time of implementations (A)-(E) for
training the Ridge Regression model on webspam.

5. Experimental Results
We investigate the performance of the five different im-
plementations of the COCOA algorithm discussed in Sec-
tion 4, by training a ridge regression model on the publicly
available webspam dataset1. All our experiments are run on
our internal cluster described in Section 4.2. If not specified
otherwise, we use 8 SPARK workers with 24 GB of memory
each, 2 on each machine, which allows the data partitions
to fit into memory. All our results are shown for optimized
parameters, including H , to suboptimality ✏ = 10�3 and
the results are averaged over 10 runs.

5.1. SPARK Performance Study

Figure 2 gives an overview over the performance of imple-
mentation (A)-(E), showing how the suboptimality evolves
over time during training for every implementation. We see
that the reference SPARK code, (A), written in Scala per-
forms significantly better than the equivalent Python im-
plementation, (C). This is to be expected, for two main
reasons: 1) Scala is a JVM compiled language in con-
trast to Python, 2) SPARK itself is written in Scala and us-
ing pySPARK, adds an additional layer which involves data
copy and serialization operations.

In this paper we would like to study the overheads present
in the SPARK framework in a language independent man-
ner (in as far as it is possible). As described in Section 4.2,
this can be achieved by offloading the computationally in-
tense local solvers into compiled C++ modules for both the
Scala as well as the Python implementations. In Figure 2
the performance of these new implementations is shown
by the dashed lines. As expected, the performance gain is
larger for the Python implementation. However, the Scala

1http://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html

High-Performance Distributed Machine Learning using Apache Spark
Dünner et al. 2016, arxiv.org/abs/1612.01437

http://arxiv.org/abs/1612.01437

min
↵2Rn

f(A↵) + g(↵)

Problem class

CoCoA - Communication Efficient
Distributed Optimization

repeat  
T times

w := w + 1
K

P
k �w(k)

�w(5)�w(1)

machine 1

⚙

machine 2

⚙

machine 3

⚙

machine 4

⚙

machine 5

⚙

Distributed Experiments

Sparse Linear Regression

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework

Seconds
0 100 200 300 400 500 600

D(
,

) -
 D

(,
*)

10-3

10-2

10-1

100 Url - Lasso: Suboptimality vs. Time

ProxCoCoA+
Shotgun
Mb-CD
Mb-SGD
OWL-QN
ADMM

Seconds
0 500 1000 1500 2000

D(
,

) -
 D

(,
*)

10-3

10-2

10-1

100 KDDB - Lasso: Suboptimality vs. Time

ProxCoCoA+
Shotgun
Mb-CD
Mb-SGD
OWL-QN
ADMM

Seconds
0 500 1000 1500

D(
,

) -
 D

(,
*)

10-3

10-2

10-1

100 Epsilon - Lasso: Suboptimality vs. Time

ProxCoCoA+
Shotgun
Mb-CD
Mb-SGD
OWL-QN
ADMM

Seconds
0 500 1000 1500 2000 2500

D(
,

) -
 D

(,
*)

10-3

10-2

10-1

100 Webspam - Lasso: Suboptimality vs. Time

ProxCoCoA+
Shotgun
Mb-CD
Mb-SGD
OWL-QN
ADMM

Figure 1. Suboptimality in terms of D(↵) for solving Lasso regression for: url (K=4, �=1E-4), kddb (K=4, �=1E-6), epsilon (K=8,
�=1E-5), and webspam (K=16, �=1E-5) datasets. PROXCOCOA+ applied to the primal formulation converges more quickly than
mini-batch SGD, Shotgun, and OWL-QN in terms of the time in seconds.

Table 1. Datasets for Empirical Study
Dataset Training Features Sparsity
url 2,396,130 3,231,961 3.5e-3%
epsilon 400,000 2,000 100%
kddb 19,264,097 29,890,095 9.8e-5%
webspam 350,000 16,609,143 0.02%

was prohibitively slow, and we thus use iterations of conju-
gate gradient and improve performance by allowing early
stopping, as well as using a varying penalty parameter ⇢
– practices described in (Boyd et al., 2010, 4.3, 3.4.1).
For mini-batch SGD (Mb-SGD), we tune the step size and
mini-batch size parameters. For mini-batch CD (Mb-CD),
we scale the updates at each round by �

b

for mini-batch size
b and � 2 [1, b], and tune both parameters b and �. Further
implementation details are given in the Appendix (Sec C).

In contrast to these described methods, we note that
PROXCOCOA+ comes with the benefit of having only a sin-
gle parameter to tune: the number of local subproblem it-
erations, H . We further explore the effect of this parameter
in Figure 3, and provide a general guideline for choosing it
in practice (see Remark 1).

Experiments are run on Amazon EC2 m3.xlarge machines
with one core per machine for the datasets in Table 1.
For Shotgun, Mb-CD, and PROXCOCOA+ in the primal,
datasets are distributed by feature, whereas for Mb-SGD,
OWL-QN, and ADMM they are distributed by datapoint.

In analyzing the performance of each algorithm (Fig-
ure 1), we measure the improvement to the primal ob-
jective, D(↵), from (1), in terms of wall-clock time in
seconds. We see that, as expected, naively distributing
Shotgun (Bradley et al., 2011) (single coordinate updates
per machine) does not perform well, as it is tailored to
shared-memory systems and requires communicating too
frequently. Both Mb-SGD and Mb-CD are also slow to
converge, and come with the additional burden having to
tune extra parameters (though Mb-CD makes clear im-
provements over Mb-SGD). OWL-QN performs the best of
all compared methods, but is still much slower to converge
than PROXCOCOA+, by at least an order of magnitude. The

optimal performance of PROXCOCOA+ is particularly ev-
ident in datasets with large numbers of features (e.g., url,
kddb, and webspam), which are exactly the datasets of par-
ticular interest for L

1

-regularized objectives.

We present results for regularization parameters � such that
the resulting weight vector ↵ is sparse. However, we note
that our results are robust to values of � as well as to various
problem settings, as shown in Figure 2.

Seconds
0 100 200 300 400 500 600 700 800

D(
,

) -
 D

(,
*)

10-3

10-2

10-1

100 Epsilon - Lasso: Convergence Across 6
ProxCoCoA+ 6=1e-4
OWL-QN 6=1e-4
ProxCoCoA+ 6=1e-5
OWL-QN 6=1e-5
ProxCoCoA+ 6=1e-6
OWL-QN 6=1e-6

Seconds
0 100 200 300 400 500

D(
,

) -
 D

(,
*)

10-3

10-2

10-1

100 Url - Elastic Net: Convergence Across 2
ProxCoCoA+ 2=.25
OWL-QN 2=.25
ProxCoCoA+ 2=.5
OWL-QN 2=.5
ProxCoCoA+ 2=.75
OWL-QN 2=.75

Figure 2. Suboptimality in terms of D(↵) for solving Lasso for
the epsilon dataset (left, K=8) and elastic net for the url dataset,
(right, K=4, �=1E-4). Speedup are robust over different regu-
larizers � (left), and across problem settings, including varying ⌘
parameters of elastic net regularization (right).

Rounds
0 20 40 60 80 100

D
(,

) -
 D

(,
*)

10-3

10-2

10-1

100 Effect of H on ProxCoCoA+: Rounds
H=nk
H=0.1*nk
H=0.01*nk
H=.001*nk

Seconds
0 500 1000 1500 2000 2500

D
(,

) -
 D

(,
*)

10-3

10-2

10-1

100 Effect of H on ProxCoCoA+: Time
H=nk
H=0.1*nk
H=0.01*nk
H=0.001*nk

Figure 3. Suboptimality in terms of D(↵) for solving Lasso for
the webspam dataset (K=16, �=1E-5). Here we illustrate how
the work spent in the local subproblem (given by H) influences
the total performance of PROXCOCOA+ in terms of number of
rounds as well as clock-time.

Finally, a crucial benefit of our framework as opposed to
quasi-Newton or other gradient-based methods is that we
have the freedom to communicate more or less frequently
depending on the dataset and network at hand. The impact
of this communication parameter, H , as a function of num-
ber of rounds and time in seconds, is shown in Figure 3.

CoCoA - A General Framework forCommunication-Efficient Distributed Optimization

Seconds
0 100 200 300 400 500 600

Pr
im

al
 S

ub
op

tim
al

ity
: O

A(�
)-O

A(�
*)

10-3

10-2

10-1

100 Url - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Seconds
0 500 1000 1500 2000

Pr
im

al
 S

ub
op

tim
al

ity
: O

A(�
)-O

A(�
*)

10-3

10-2

10-1

100 KDDB - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Seconds
0 500 1000 1500

Pr
im

al
 S

ub
op

tim
al

ity
: O

A(�
)-O

A(�
*)

10-3

10-2

10-1

100 Epsilon - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Seconds
0 500 1000 1500 2000 2500

Pr
im

al
 S

ub
op

tim
al

ity
: O

A(�
)-O

A(�
*)

10-3

10-2

10-1

100 Webspam - Lasso: Suboptimality vs. Time

CoCoA-Primal
Shotgun
Mb-CD
Mb-SGD
Prox-GD
OWL-QN
ADMM

Figure 1: Suboptimality in terms of O
A

(↵) for fitting a lasso regression model to four
datasets: url (K=4, �=1e-4), kddb (K=4, �=1e-6), epsilon (K=8, �=1e-5), and web-
spam (K=16, �=1e-5) datasets. CoCoA applied to the primal formulation converges more
quickly than all other compared methods in terms of the time in seconds.

burden of having to tune extra parameters (though Mb-CD makes clear improvements
over Mb-SGD). As expected, naively distributing Shotgun (single coordinate updates per
machine) does not perform well, as it is tailored to shared-memory systems and requires
communicating too frequently. OWL-QN performs the best of all compared methods, but
is still much slower to converge than CoCoA, and converges, e.g., 50⇥ more slowly for the
webspam dataset. The optimal performance of CoCoA is particularly evident in datasets
with large numbers of features (e.g., url, kddb, webspam), which are exactly the datasets of
interest for L

1

regularization.
Results are shown for regularization parameters � such that the resulting weight vector ↵

is sparse. However, our results are robust to varying values of � as well as to various problem
settings, as we illustrate in Figure 2.

A case against smoothing. We additionally motivate the use of CoCoA in the primal
by showing how it improves upon CoCoA in the dual (Yang, 2013; Jaggi et al., 2014; Ma
et al., 2015b,a) for non-strongly convex regularizers. First, CoCoA in the dual cannot be

23

NIPS 2014, ICML 2015,
arxiv.org/abs/1611.02189

Spark Code:  
github.com/gingsmith/proxcocoa  
 
+ TensorFlow 
+ Apache Flink

https://arxiv.org/abs/1611.02189
https://github.com/gingsmith/proxcocoa

Leveraging Memory Hierarchy
Which data to put in which memory?

Challenge

machine 1

⚙

machine 2

⚙

GPU 1a

⚙⚙⚙⚙

GPU 1b

⚙⚙⚙⚙

Unit A

⚙

Unit B

⚙⚙⚙⚙

30GB 8GB

Leveraging Memory Hierarchy
duality gap as selection criterion

adaptive importance sampling AISTATS 2017

https://arxiv.org/abs/1703.02518

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Coordinate Selection for Heterogenous Limited-Memory Systems

(a) (b) (c)

Figure 4. Training the lasso model on the 30GB imagenet dataset. (a) convergence behavior, (b) communication cost, (c) performance
for our gap-based, the random reference and the sequential scheme.

(a) (b) (c)

Figure 5. Training the ridge regression model on the 30GB imagenet dataset. (a) convergence behavior, (b) communication cost, (c) per-
formance for our gap-based, the random reference and the sequential scheme.

random scheme. In Figure 4(b) we show the cumulative
number of features replaced on the GPU as a function of
coordinate updates performed. We see that for the gap-
based scheme the cost of copying data on and off the GPU
is negligible after only few rounds, whereas for the refer-
ence schemes the number of features replaced per round
stays fixed. In Figure 4(c) we plot the convergence of the
different schemes as a function of time. We see that these
two gain are in fact additive and lead to a significant, 9⇥,
improvement relative to the best reference scheme.

Our scheme also performs well if the support of the data
does not fit into the GPU memory and some swapping is
needed throughout the whole algorithm. This can be seen
from the ridge regression results shown in Figure 5(a)-5(c).
In this case the gain of reduced communication cost is
much smaller over the reference schemes but we still ben-
efit from improved convergence based on the smart choice
of active coordinates, resulting in a gain of 2⇥ relative to
random swapping.

Conclusion
We have presented a novel theoretical analysis of block
coordinate descent, highlighting how the performance de-
pends on the coordinate selection. These results suggest
that the contribution of individual coordinates to the over-
all duality gap is a good indicator for their relevance to the
overall model optimization.
With this measure at hand, we develop a generic scheme
for efficient training in the presence of high performance
resources of limited memory capacity. We suggest a gap-
memory based strategy to smartly select which portion of
the data to make available for fast processing. On a large
real dataset which exceeds the capacity of a modern GPU,
we demonstrate that our scheme outperforms existing se-
quential approaches by over 10⇥ for the highly relevant
sparse lasso model and 2⇥ for the dense ridge regression
model. Our detailed analysis shows that this gain comes
both from the improved convergence attributed to the gap-
based sampling as well as reduced communication over-
head.

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Coordinate Selection for Heterogenous Limited-Memory Systems

(a) (b) (c)

Figure 4. Training the lasso model on the 30GB imagenet dataset. (a) convergence behavior, (b) communication cost, (c) performance
for our gap-based, the random reference and the sequential scheme.

(a) (b) (c)

Figure 5. Training the ridge regression model on the 30GB imagenet dataset. (a) convergence behavior, (b) communication cost, (c) per-
formance for our gap-based, the random reference and the sequential scheme.

random scheme. In Figure 4(b) we show the cumulative
number of features replaced on the GPU as a function of
coordinate updates performed. We see that for the gap-
based scheme the cost of copying data on and off the GPU
is negligible after only few rounds, whereas for the refer-
ence schemes the number of features replaced per round
stays fixed. In Figure 4(c) we plot the convergence of the
different schemes as a function of time. We see that these
two gain are in fact additive and lead to a significant, 9⇥,
improvement relative to the best reference scheme.

Our scheme also performs well if the support of the data
does not fit into the GPU memory and some swapping is
needed throughout the whole algorithm. This can be seen
from the ridge regression results shown in Figure 5(a)-5(c).
In this case the gain of reduced communication cost is
much smaller over the reference schemes but we still ben-
efit from improved convergence based on the smart choice
of active coordinates, resulting in a gain of 2⇥ relative to
random swapping.

Conclusion
We have presented a novel theoretical analysis of block
coordinate descent, highlighting how the performance de-
pends on the coordinate selection. These results suggest
that the contribution of individual coordinates to the over-
all duality gap is a good indicator for their relevance to the
overall model optimization.
With this measure at hand, we develop a generic scheme
for efficient training in the presence of high performance
resources of limited memory capacity. We suggest a gap-
memory based strategy to smartly select which portion of
the data to make available for fast processing. On a large
real dataset which exceeds the capacity of a modern GPU,
we demonstrate that our scheme outperforms existing se-
quential approaches by over 10⇥ for the highly relevant
sparse lasso model and 2⇥ for the dense ridge regression
model. Our detailed analysis shows that this gain comes
both from the improved convergence attributed to the gap-
based sampling as well as reduced communication over-
head.

Experiments
Sparse Linear Regression, RAM GPU

Conclusion

✤ try to improve usability of large-scale ML

✤ full adaptivity to the communication cost,  
memory hierarchy and bandwidth

✤ re-usability of good single machine solvers

✤ accuracy certificates

Open Research

machine 1

⚙
GPU 1a

⚙⚙⚙⚙

GPU 1b

⚙⚙⚙⚙

✤ limited precision operations for efficiency of

communication and computation

✤ asynchronous and fault tolerant algorithms

✤ multi-level approach on heterogenous systems

✤ more re-usable algorithmic building blocks  
- for more systems and problems

Project:  
Distributed Machine
Learning Benchmark

Goal:  
Public and Reproducible
Comparison of Distributed Solvers  
 
github.com/mlbench/mlbench

Apache

Apache

HPC

Google

https://github.com/mlbench/mlbench

Thanks!

mlo.epfl.ch

Celestine Dünner, Virginia Smith, Simone Forte, Chenxin Ma, Martin Takac,
Dmytro Perekrestenko, Volkan Cevher, Michael I. Jordan, Thomas Hofmann

http://mlo.epfl.ch

Matrix Factorizations

min
U ,V

f(UV >)

A
loc

�↵[k] +w

Optimization: Primal-Dual Context

primal Lasso
dual L2-reg SVM/Log-Regr
primal L1-reg SVM/Log-Reg

CoCoA: A General Framework for Communication-Efficient Distributed Optimization

2. Background and Setup

In this paper we develop a general framework for minimizing problems of the following form:

`(u) + r(u) , (I)

for convex functions ` and r. Frequently the first term ` is an empirical loss over the
data, taking the form

P

i

`
i

(u), and the second term r is a regularizer, e.g., r(u) = �kuk
p

.
This formulation includes many popular methods in machine learning and signal processing,
such as support vector machines, linear and logistic regression, Lasso and sparse logistic
regression, and many others.

2.1 Definitions

The following standard definitions will be used throughout the paper.

Definition 1 (L-Lipschitz Continuity). A function h : Rm ! R is L-Lipschitz continuous
iff 8u,v 2 Rm, we have

|h(u)� h(v)| Lku� vk . (1)

Definition 2 (L-Bounded Support). A function h : Rm ! R [{+1} has L-bounded
support iff its effective domain is bounded by L, i.e.,

h(u) < +1) kuk L . (2)

Definition 3 ((1/µ)-Smoothness). A function h : Rm ! R is (1/µ)-smooth iff it is differ-
entiable and its derivative is (1/µ)-Lipschitz continuous, or equivalently

h(u) h(v) + hrh(v),u� vi+ 1

2µ
ku� vk2 8u,w 2 Rm . (3)

Definition 4 (µ-Strong Convexity). A function h : Rm ! R is µ-strongly convex for µ � 0

iff
h(u) � h(v) + hrh(v),u� vi+ µ

2

ku� vk2 8u,v 2 Rm , (4)

and analogously if the same holds for all subgradients, in the case of a general closed convex
function h : Rm ! R [{+1}.

2.2 Primal-Dual Setting

Numerous methods have been proposed to solve (I), and these methods generally fall into
two categories: primal methods, which run directly on the primal objective, and dual meth-
ods, which instead run on the dual formulation of the primal objective. In developing our
framework, we present an abstraction that allows for either a primal or dual variant of our
framework to be run. In particular, to solve the input problem (I) through our framework,
we will consider mapping it to one of the following two general problems:

min

↵2Rn

h

O
A

(↵) := f(A↵) + g(↵)

i

(A)

3

Authors

min

w2Rd

h

O
B

(w) := g⇤(�A>
w) + f⇤

(w)

i

(B)

Here ↵ 2 Rn and w 2 Rd are parameter vectors, and A := [x

1

; . . . ;x
n

] 2 Rd⇥n is a data
matrix with column vectors x

i

2 Rd, i 2 [n]. Our main assumptions on the problems (A)
and (B) will be that f is (1/⌧)-smooth and f⇤ is ⌧ -strongly convex. The functions g and g⇤

are assumed to be separable, i.e., g(↵) =

P

i

g
i

(↵
i

) and g⇤(�A>
w) =

P

i

g⇤
i

(�x

>
i

w), with g
i

and g⇤
i

being arbitrary convex functions.
The problems (A) and (B) are dual to each other, with the functions f⇤, g⇤

i

in (B) being
the convex conjugates of f, g

i

, respectively. This particular structure is a case of Fenchel-
Rockafellar duality. For additional details on this duality structure, see (Borwein and Zhu,
2005, Theorem 4.4.2), or a self-contained derivation in Section 8.

Given ↵ 2 Rn in the context of (A), a corresponding vector w 2 Rd for problem (B) is
obtained by:

w = w(↵) := rf(A↵) . (5)

This mapping arises from first-order optimality conditions on the f -part of the objective.
The duality gap, given by:

G(↵) := O
A

(↵)� [�O
B

(w(↵))] (6)

provides a practically computable upper bound on the optimization error, as the distance
from O

A

(↵) to the true optimum O
A

(↵?

) is never greater than the distance between the two
objective values O

A

(↵) and O
B

(w(↵)). This holds analogously for the objective O
B

(w),
noting that from strong duality we have O

A

(↵?

) = �O
B

(w

?

).
In developing the proposed framework, observing the duality between (A) and (B) will

prove to have many benefits, including the ability to compute the duality gap, which will act
as a certificate of the approximation quality. It is also useful as an analysis tool, helping us
to present a cohesive framework and relate this work to the prior work of (Yang, 2013; Jaggi
et al., 2014; Ma et al., 2015). As a word of caution, note that here we avoid prescribing the
name “primal” or “dual” to either of the problems (A) or (B), as we will see below that their
role as primal or dual will change depending on the problem of interest.

2.3 Problem Cases

For clarity, we highlight our assumptions on objectives (A) and (B) in Table 1. Suppose,
as in equation (I), we would like to find a minimizer of the general objective `(u) + r(u).
Depending on the smoothness of the function ` and the strong convexity of the function r,
we will be able to map the input function (I) to one (or both) of the objectives (A) and (B).
In Section 3, we will see that different variants of our framework may be realized depending
on which objective (I) is mapped to.

In particular, we outline three separate cases: Case I, in which the function ` is smooth
and the function r is strongly convex; case II, in which ` is smooth, and r is non-strongly
convex and separable; and case III, in which ` is non-smooth and separable, and r is strongly
convex. The union of these cases will capture most commonly-used applications of linear
regularized loss minimization problems.

4

correspondence

w := rf(A↵)

