on HPC and Cloud Architectures

Martin Jaggi EPFL Machine Learning and Optimization Laboratory mlo.epfl.ch

SOS 21 Workshop - Convergence with Data Science: a New Beginning for HPC

Distributed Machine Learning Current Bottlenecks in Algorithms and Software Frameworks

Machine Learning Methods to Analyze Large-Scale Data

Machine Learning

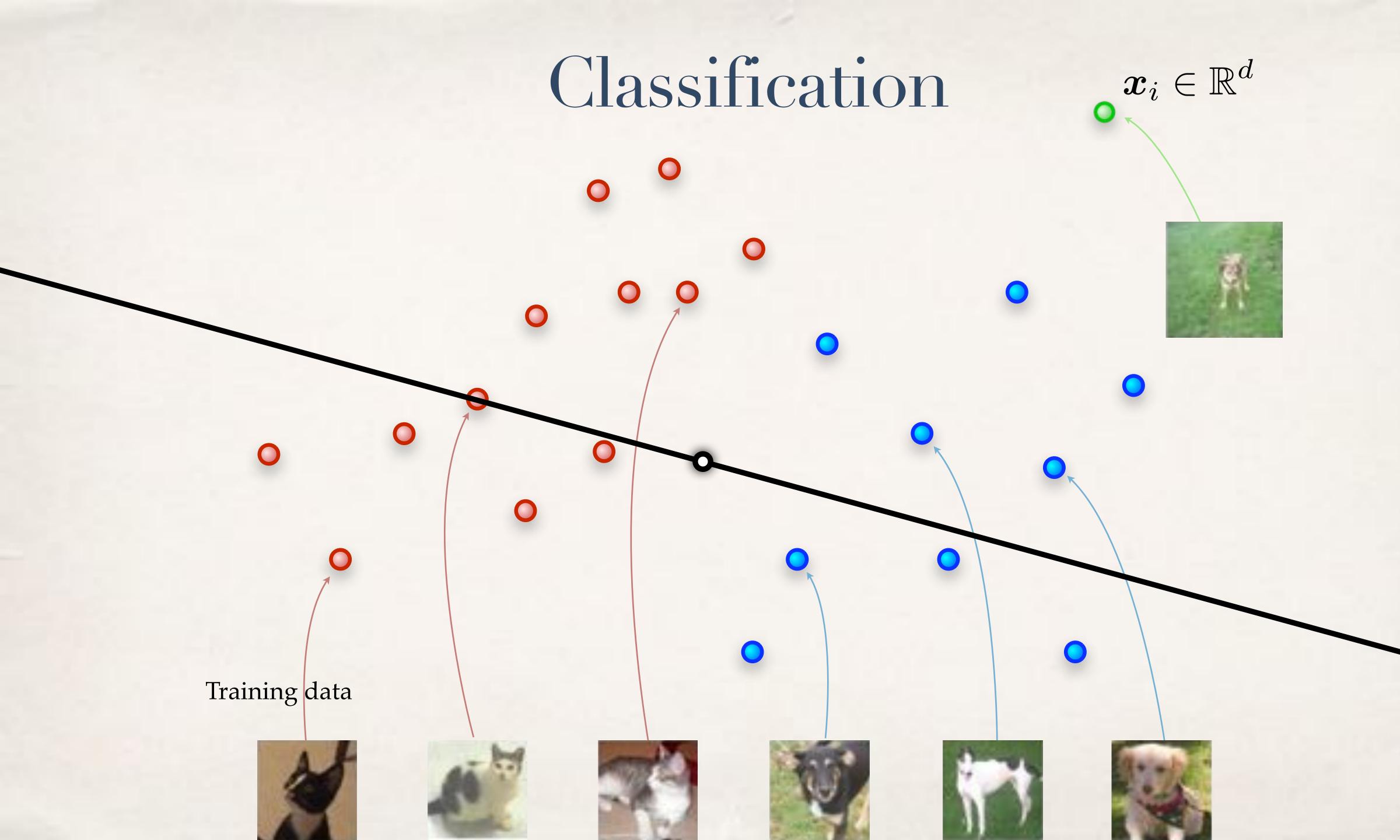
Optimization

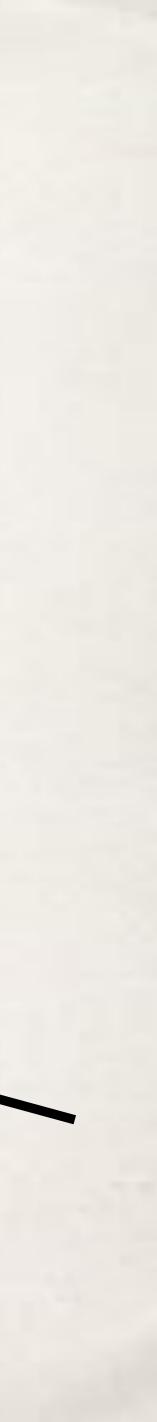
Applications

What is Machine Learning?

software that can

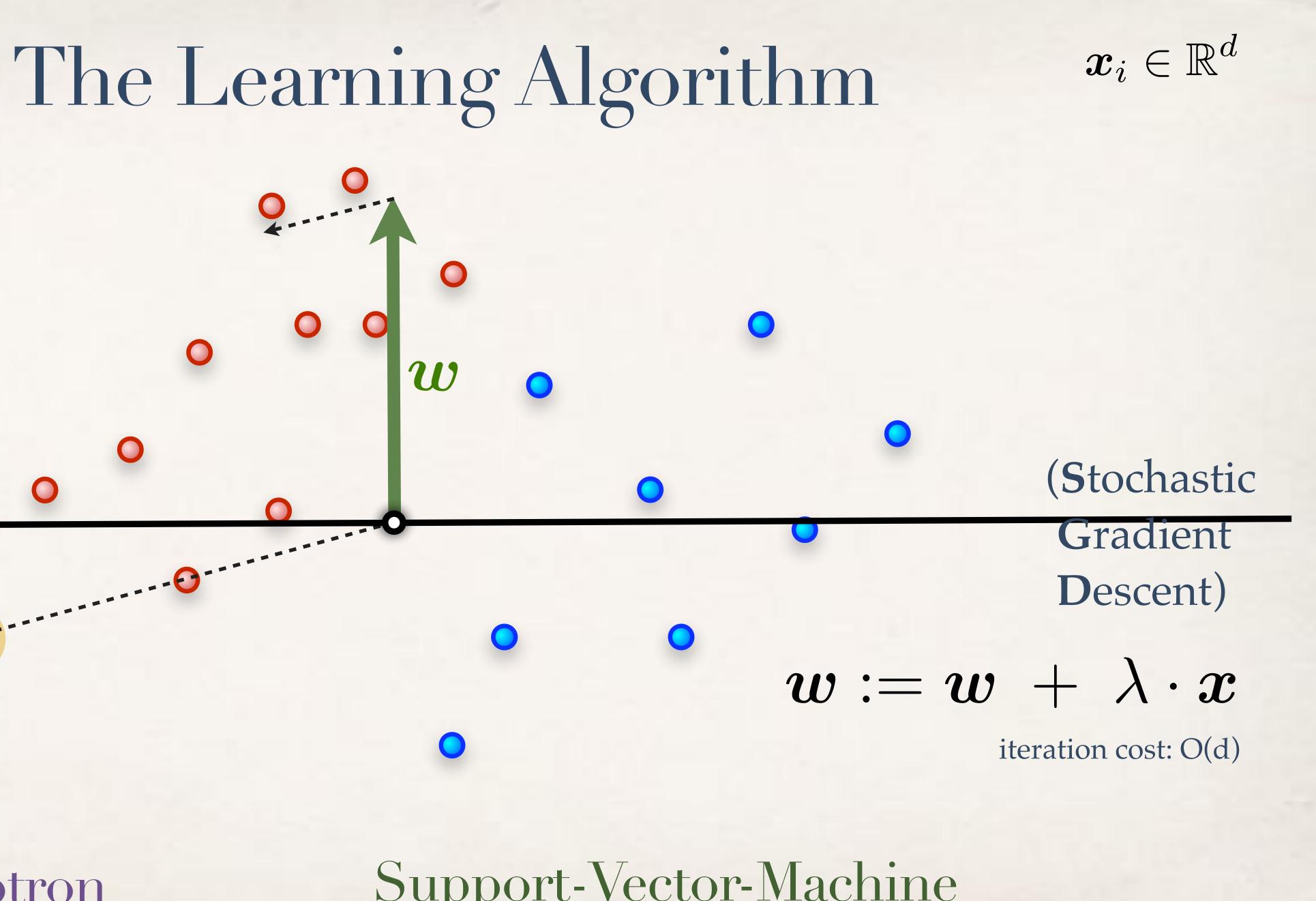
learn from data





Perceptron (Rosenblatt 1957)

 \boldsymbol{x}

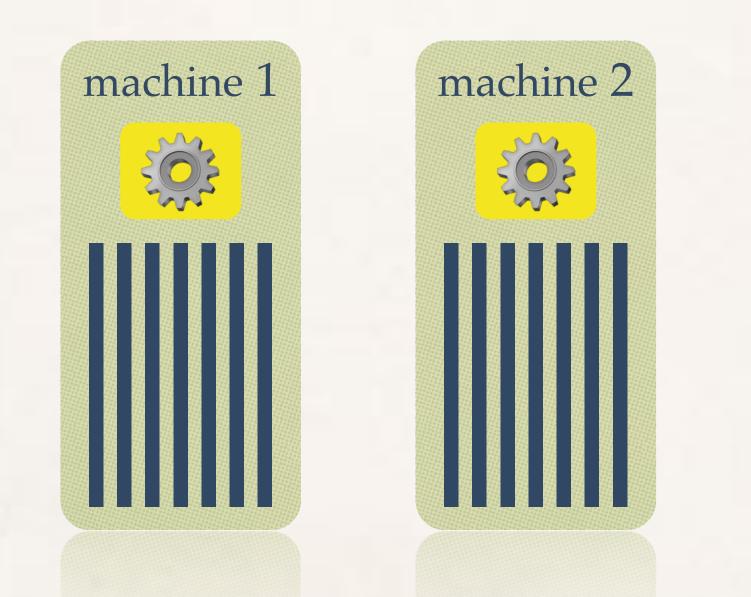


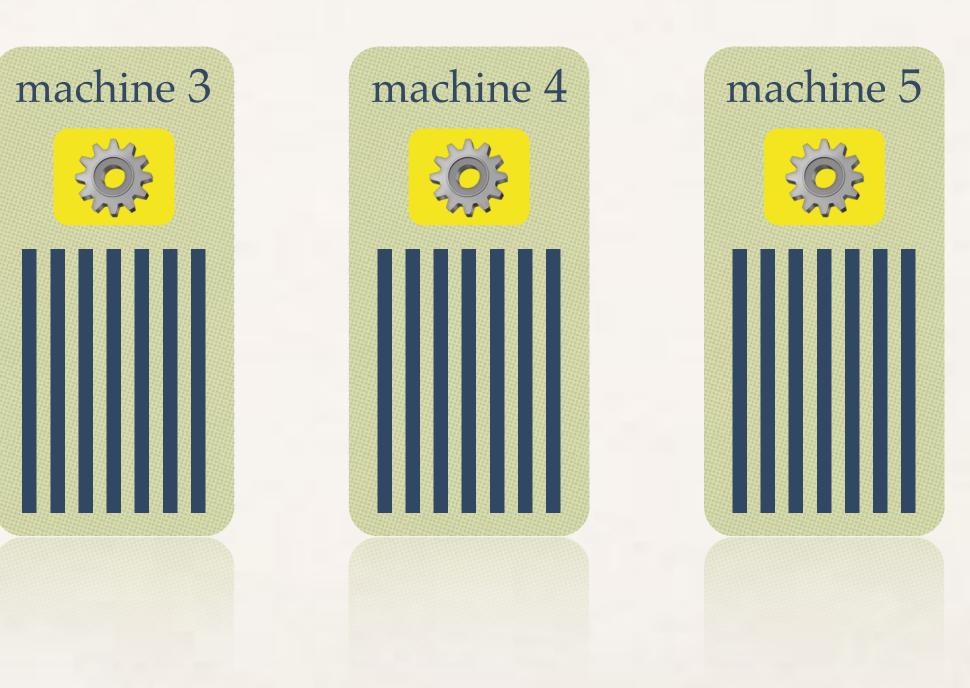
Support-Vector-Machine (Cortes & Vapnik 1995)

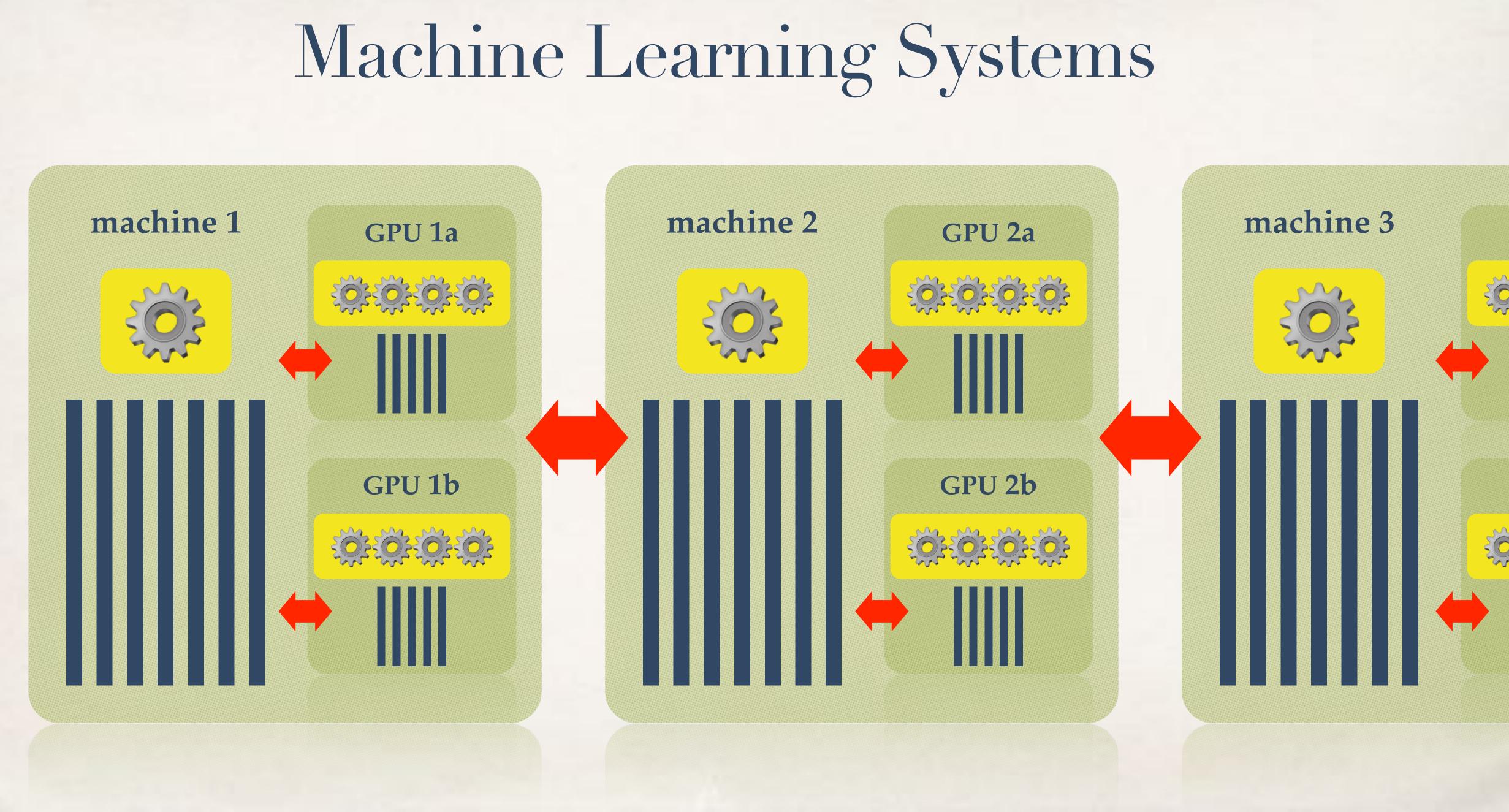
Machine Learning Systems

Machine Learning Systems

What if the data does not fit onto one computer anymore?







Challenge The Cost of Communication

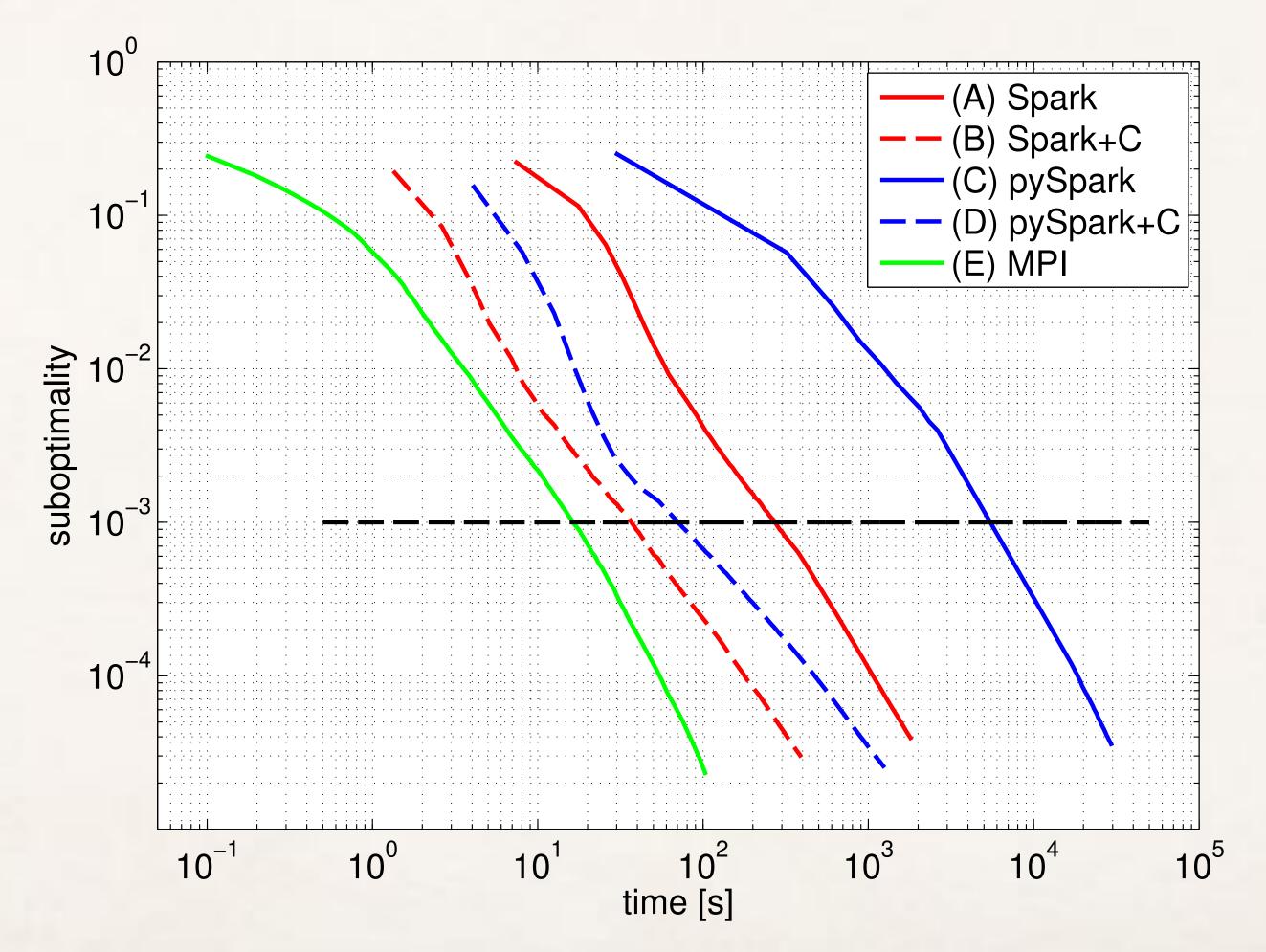
• Reading v from memory (RAM) 100 ns

• Sending v to another machine 500'000 ns

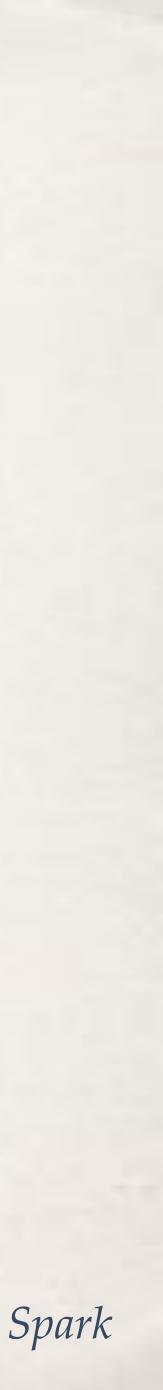
 Typical Map-Reduce iteration 10'000'000'000 ns

$oldsymbol{v} \in \mathbb{R}^{100}$

Challenge The Cost of Communication



High-Performance Distributed Machine Learning using Apache Spark Dünner et al. 2016, <u>arxiv.org/abs/1612.01437</u>

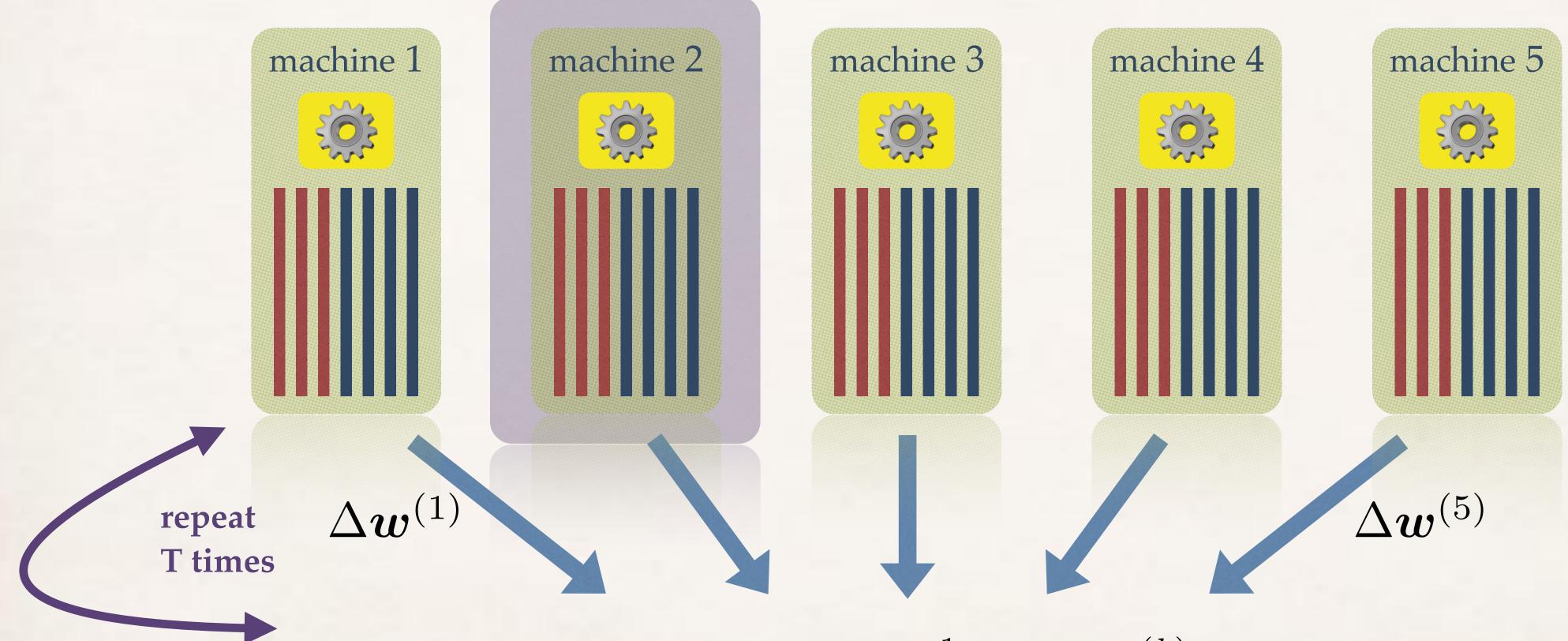


Problem class

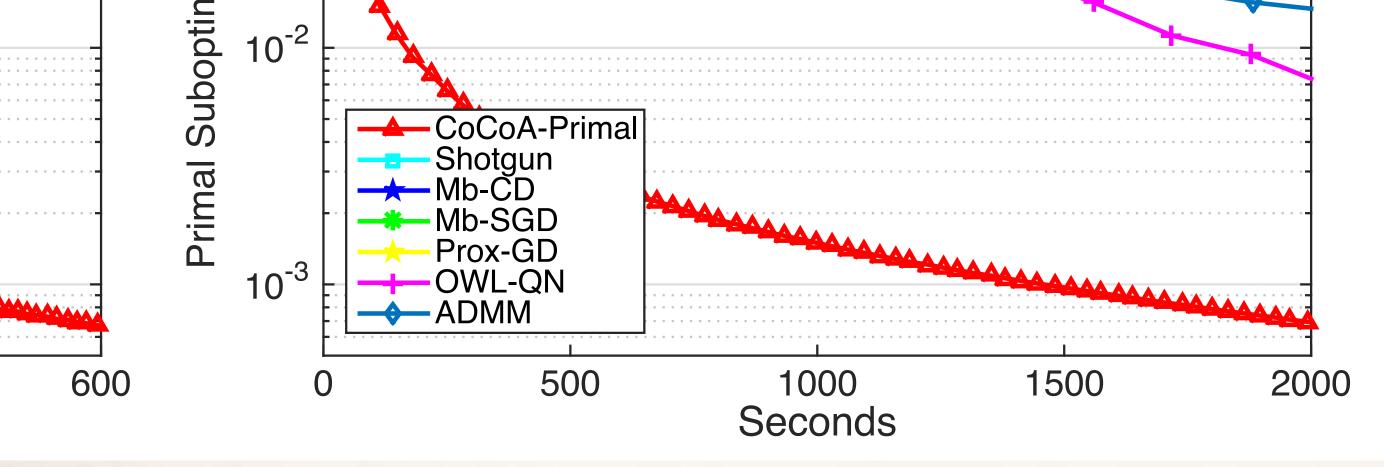
$\min_{\alpha \in \mathbb{R}^n}$

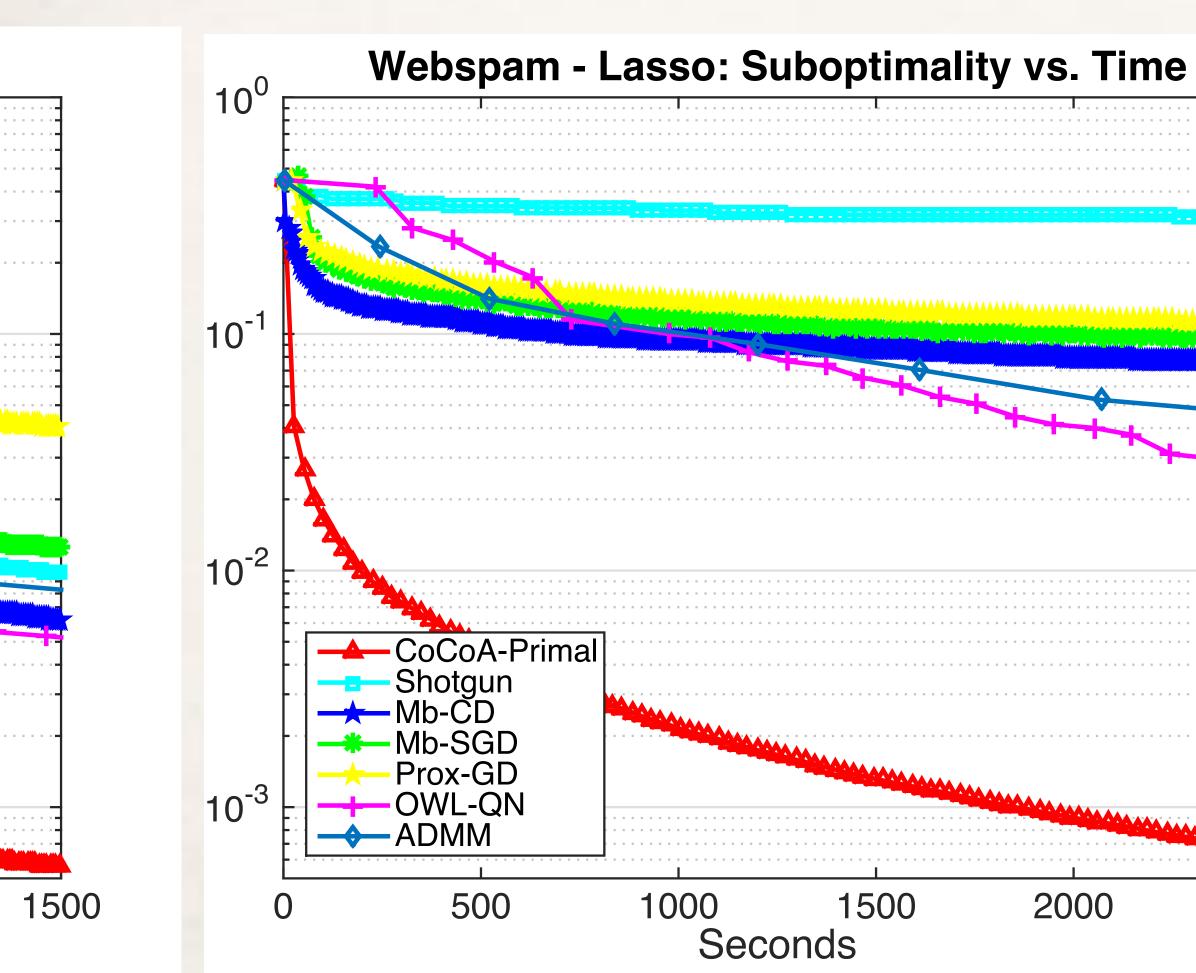
$f(A\alpha) + g(\alpha)$

CoCoA - Communication Efficient Distributed Optimization



 $\boldsymbol{w} := \boldsymbol{w} + rac{1}{K} \sum_k \Delta \boldsymbol{w}^{(k)}$





eriments

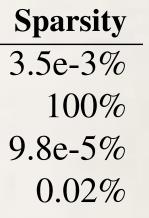
Dataset	Training	Features	
url	2,396,130	3,231,961	
epsilon	400,000	2,000	
kddb	19,264,097	29,890,095	
webspam	350,000	16,609,143	

NIPS 2014, ICML 2015, arxiv.org/abs/1611.02189

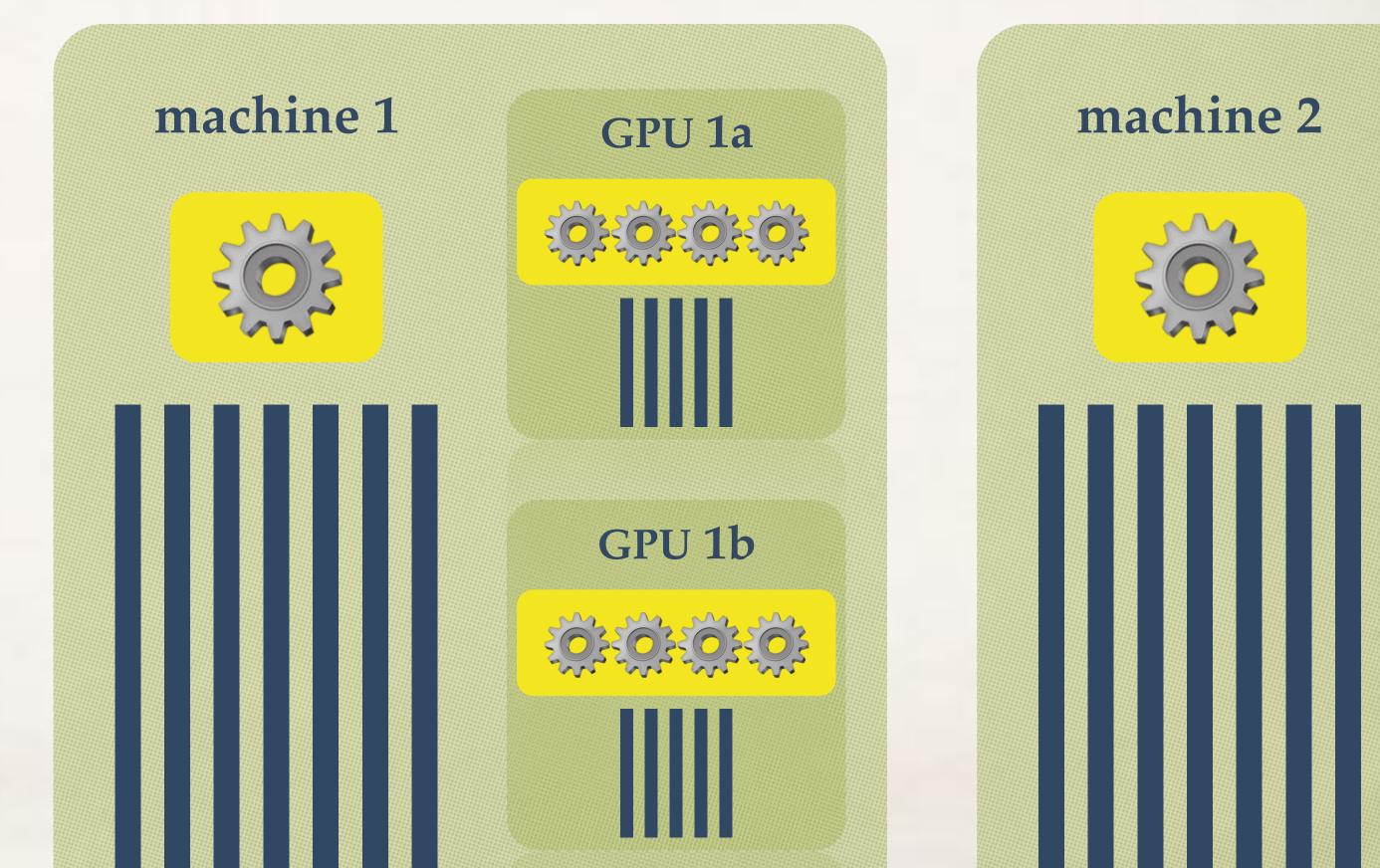
Spark Code: <u>github.com/gingsmith/proxcocoa</u>

+ TensorFlow+ Apache Flink

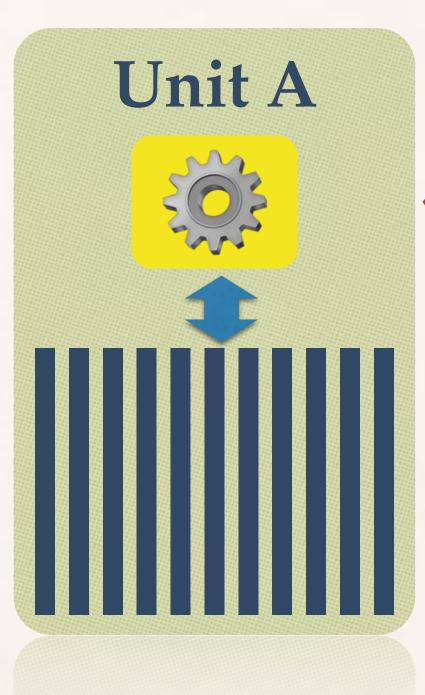
2500



Challenge Leveraging Memory Hierarchy Which data to put in which memory?

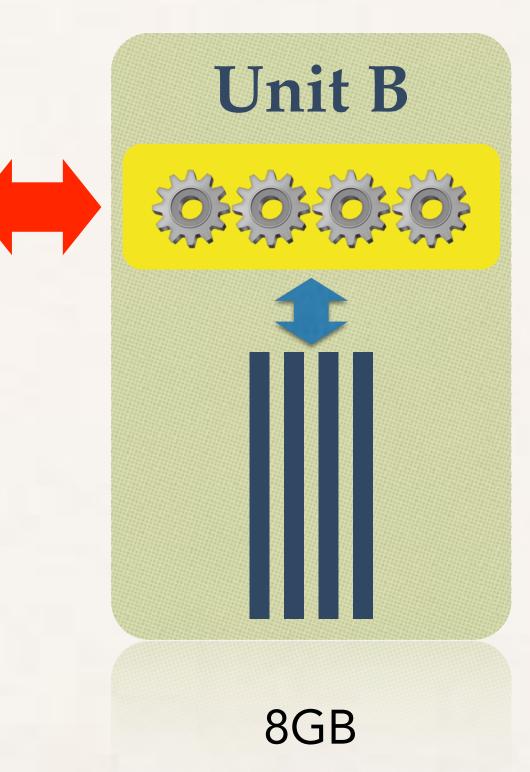


Leveraging Memory Hierarchy duality gap as selection criterion

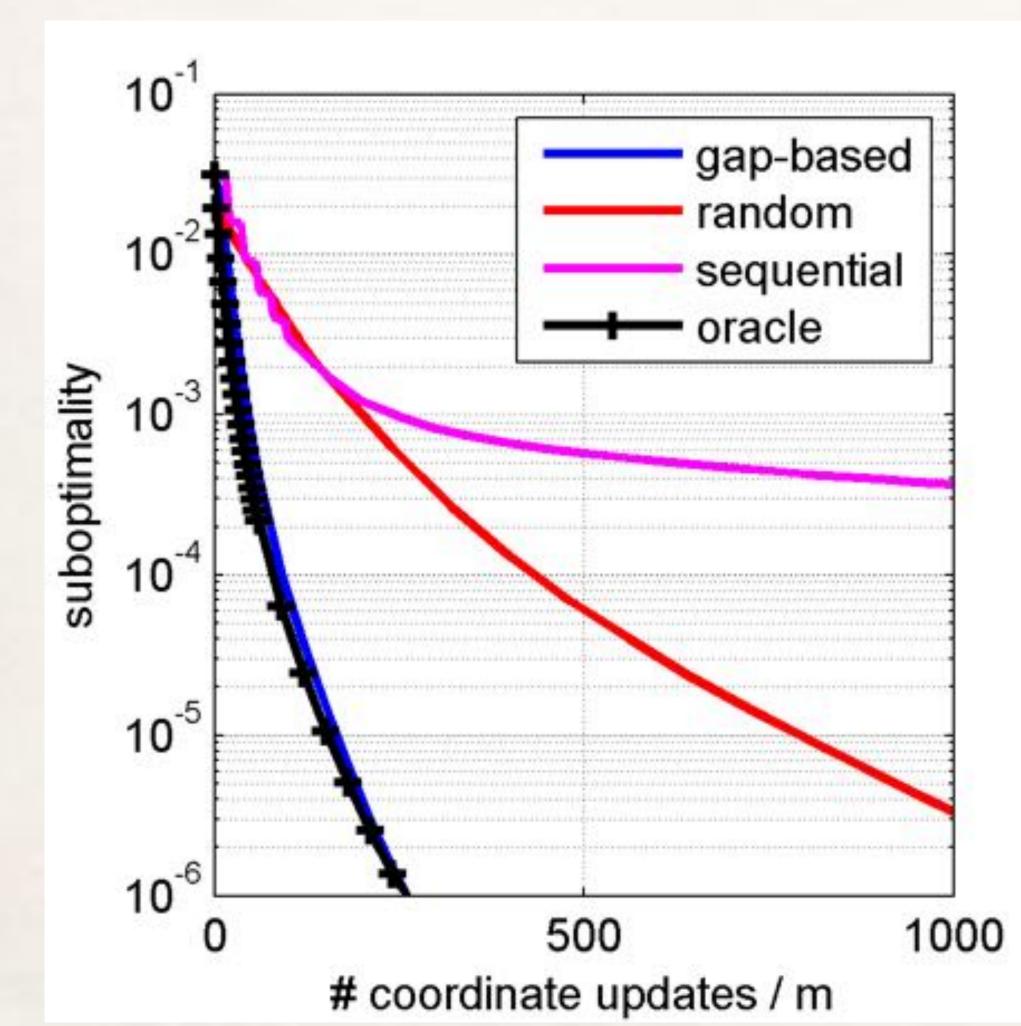


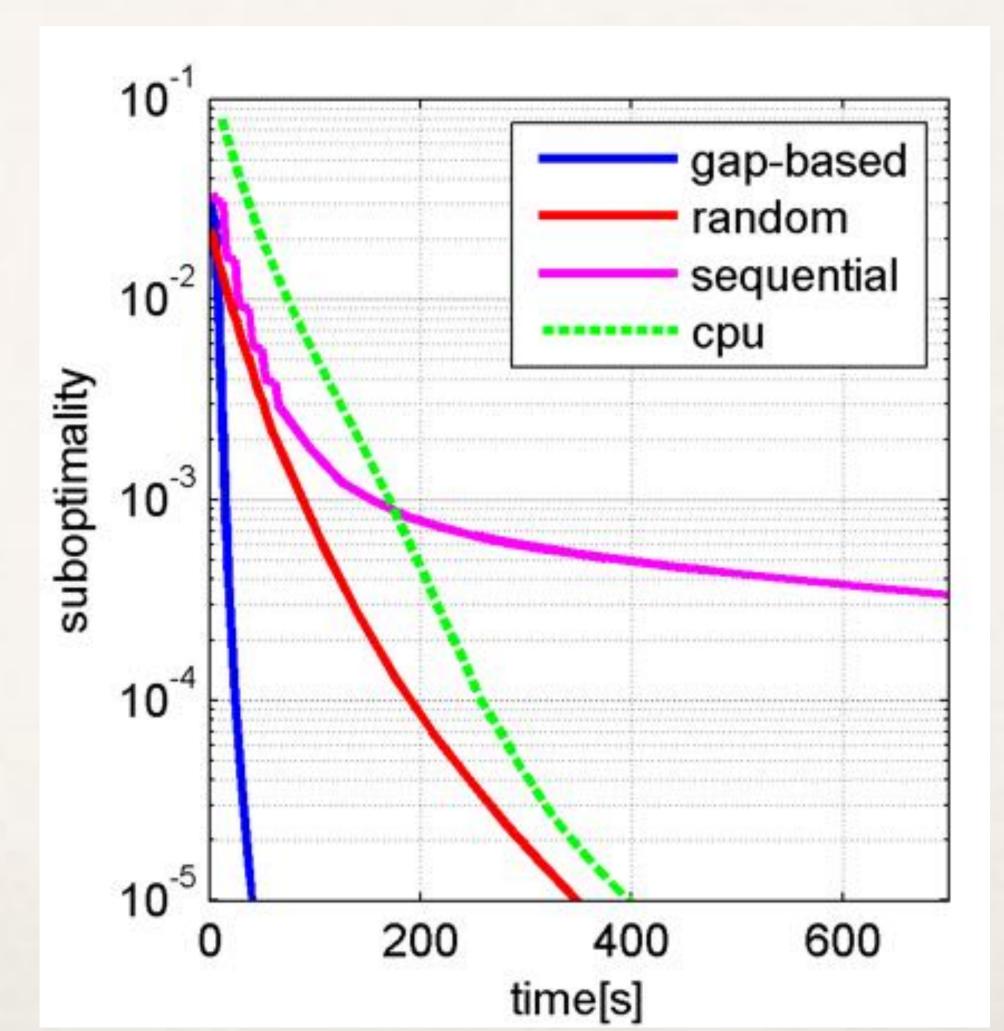
30GB

adaptive importance sampling



Experiments Sparse Linear Regression, RAM GPU



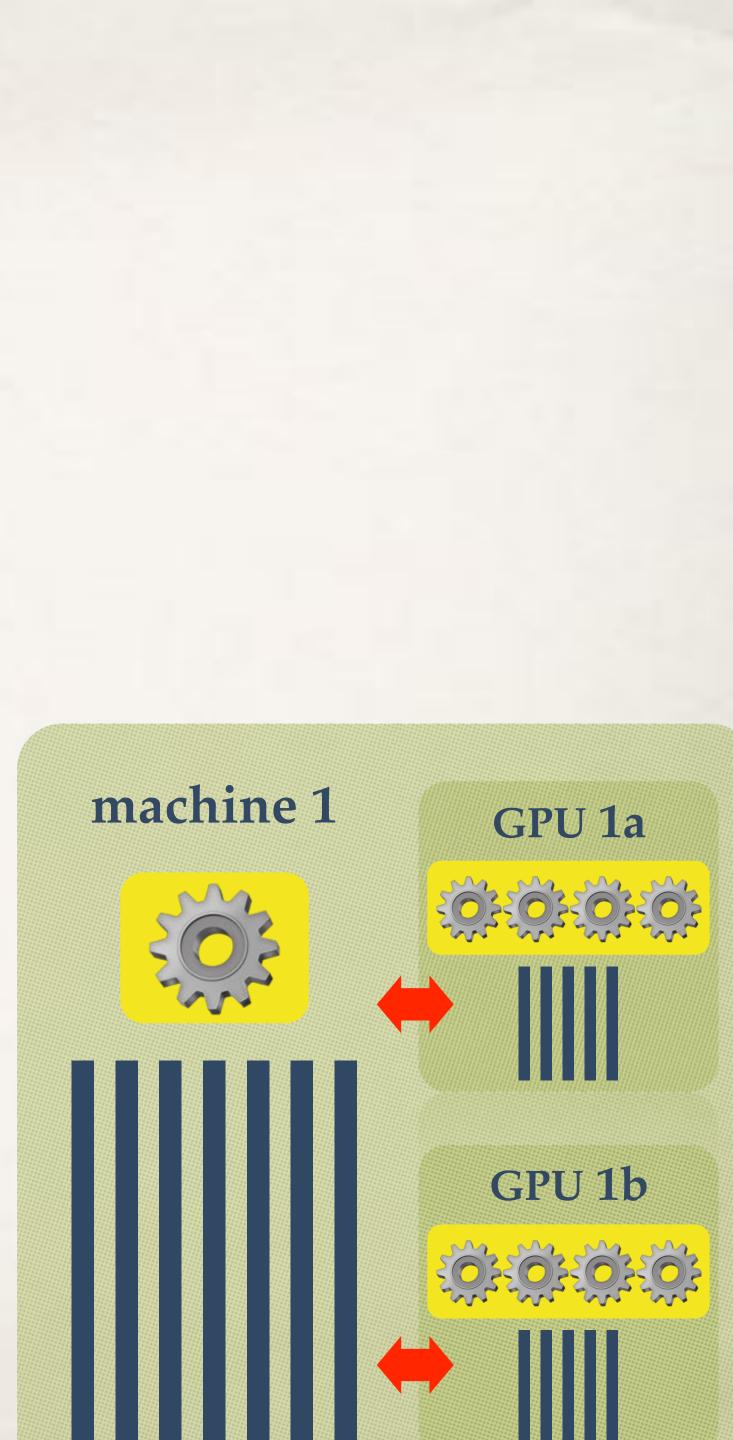


try to improve usability of large-scale ML full adaptivity to the communication cost, memory hierarchy and bandwidth re-usability of good single machine solvers accuracy certificates

Conclusion

- Iimited precision operations for efficiency of communication and computation
- asynchronous and fault tolerant algorithms
- multi-level approach on heterogenous systems
- more re-usable algorithmic building blocks
 - for more systems and problems

Open Research



Project: Distributed Machine Learning Benchmark

Goal: Public and Reproducible **Comparison of Distributed Solvers**

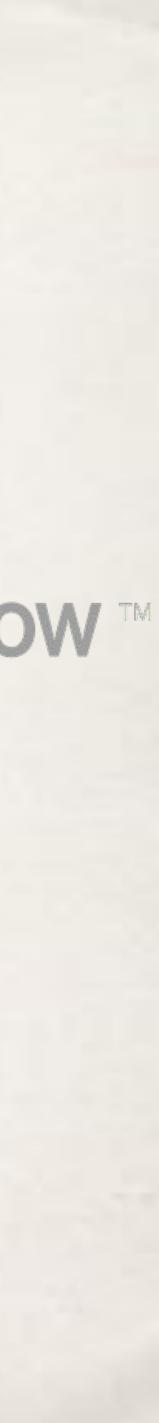
github.com/mlbench/mlbench

Apache

Google

Apache

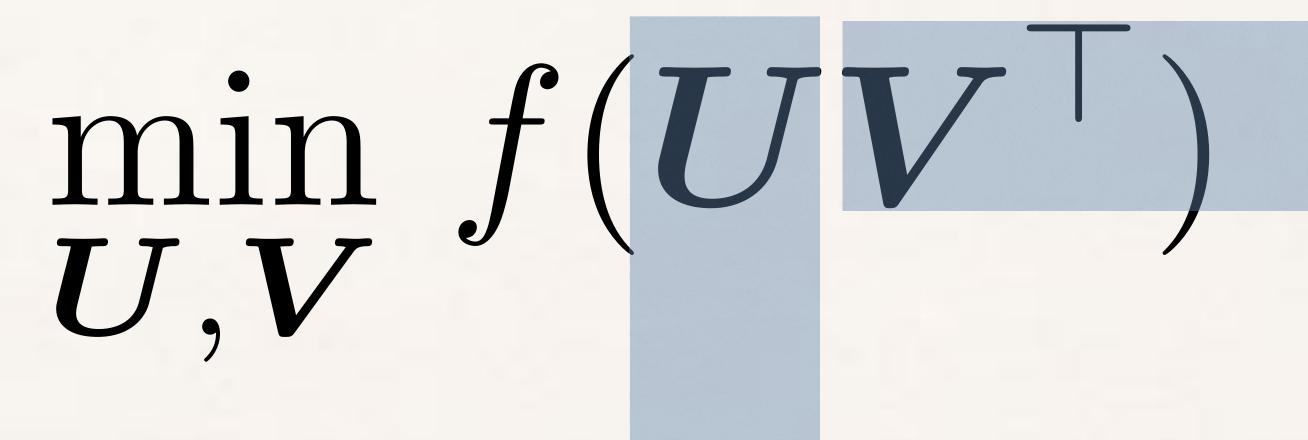
HPC



Celestine Dünner, Virginia Smith, Simone Forte, Chenxin Ma, Martin Takac, Dmytro Perekrestenko, Volkan Cevher, Michael I. Jordan, Thomas Hofmann

Thanks! mlo.epfl.ch

Matrix Factorizations

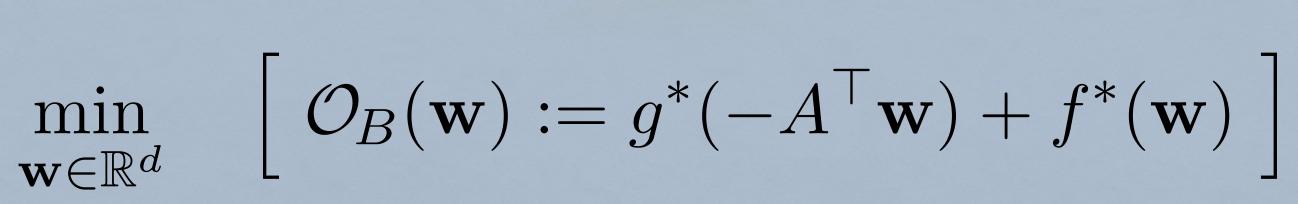


Optimization: Primal-Dual Context

 $A_{\text{loc}}\Delta \boldsymbol{\alpha}_{[k]} + \boldsymbol{w}$ $\min_{\boldsymbol{\alpha}\in\mathbb{R}^n} \quad \left[\mathcal{O}_A(\boldsymbol{\alpha}) := f(\boldsymbol{A}\boldsymbol{\alpha}) + g(\boldsymbol{\alpha}) \right]$

correspondence

 $\boldsymbol{w} := \nabla f(A\boldsymbol{\alpha})$



primal Lasso dual L2-reg SVM/Log-Regr primal L1-reg SVM/Log-Reg

